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�e Department of Energy supports a wide spec-
trum of experimental facilities to advance the fun-
damental science that will meet the nation’s energy,
environmental, and national security challenges.
State-of-the-art applied mathematics can play a piv-
otal role in these investigations, transforming ex-
perimental science and furthering discovery.

Fundamental computational methods are
needed to extract information from murky data,
interpret experimental results, and provide on-
demand analysis as data is generated. Advanced
algorithms can screen candidate materials that are
expensive and time-consuming to manufacture,
rapidly �nd optimal solutions to energy-related
challenges, and suggest new experiments for scien-
ti�c discovery.

To address these growing needs, the Depart-
ment of Energy established the Center for Advanced
Mathematics for Energy Research Applications
(CAMERA). Within this center, cross-disciplinary
teams of applied mathematicians, so�ware engi-
neers, and facility scientists work together to formu-
late models, derive appropriate equations, develop
algorithms, build and test prototype codes, and de-
liver useable so�ware. Jointly funded by the O�ce
of Advanced Scienti�c Computing Research (ASCR)
and the O�ce of Basic Energy Sciences (BES), CAM-
ERA is now a nationwide community resource in
service of the DOE facilities.

�is report provides a snapshot of some of CAM-
ERA’s current activities.
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Glossary

ASCR O�ce of Advanced Scienti�c Computing
Research, DOE
ALS Advanced Light Source
APS Advanced Photon Source
AMI Adolphe Merkle Institute
ALCF Argonne Leadership Computing Facility
ANL Argonne National Laboratory
BES O�ce of Basic Energy Sciences, DOE
BNL Brookhaven National Laboratory
CAMERA Center for Advanced Mathematics for
Energy Research Applications
CD-GISAXS Critical Dimension Grazing Incidence
Small Angle X-Ray Sca�ering
CD-SAXS Critical Dimension Small Angle X-Ray
Sca�ering

CFN Center for Functional Nanomaterials
CLS Canadian Light Source
CWI Centrum Wiskunde & Informatica, Nether-
lands
DASK Library for dynamic task scheduling,
http://dask.pydata.org

DESY Deutsches Elektronen-Synchrotron
Diamond Diamond Light Source at Harwell, UK
DOE US Department of Energy
EM Electron Microscopy
EMAT �e Electron Microscopy for Materials Sci-
ence (EMAT) Reseach group, Antwerp, Belgium
ESRF European Synchrotron Radiation Facility
FXS Fluctuation X-Ray Sca�ering
GISAXS Grazing Incidence Small Angle X-Ray
Sca�ering
GUI Graphical User Interface
JBEI Joint Bio-Energy Institute
KIT Karlsruhe Institute of Technology
LDRD Laboratory Directed Research and Develop-

ment
LANL Los Alamos National Laboratory
LLNL Lawrence Livermore National Laboratory
LBNL Lawrence Berkeley National Laboratory
LCLS Linear Coherent Light Source
MSRI Mathematical Sciences Research Institute
M-TIP Multi-Tiered Iterative Phasing
NSLS-II National Synchrotron Light Source
NIST National Institute of Standards and Technol-
ogy
NCEM National Center for Electron Microscopy
NERSC National Energy Research Scienti�c Com-
puting Center
NXCT National Center for X-Ray Tomography
OLCF Oak Ridge Leadership Computing Facility
ORNL Oak Ridge National Laboratory
PSI Paul Scherrer Institute, Switzerland
PAWS Platform for Automated Work�ows (from
SSRL)
Petra-IV Synchrotron at DESY
SciDAC Scienti�c Discovery through Advanced
Computing
SAXS Small Angle X-Ray Sca�ering
SPD Single Particle Di�raction
SPI Single Particle Initiative
SLAC Stanford Linear Accelerator Center
SSRL Stanford Synchrotron Radiation Lightsource
TUM Technical University Munich
UCSF University of California, San Francisco
WAXS Wide Angle X-Ray Sca�ering
XFEL X-Ray Free Electon Laser
XPCS X-Ray Photon Correlation Spectroscopy
Xi-CAM CAMERA open source so�ware for syn-
chrotron experiments

�e Center for Advanced Mathematics for Energy Research Applications (CAMERA)
Building 50A-2113, Lawrence Berkeley National Laboratory

1 Cyclotron Road, Berkeley, California 94720
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Technological advances are opening doors to
new experimental science, with scienti�c facilities
collecting data at increasing rates and higher resolu-
tion. Analyzing this data is now a major bo�leneck.
New mathematics and algorithms are needed to ex-
tract useful information from experiments.

To address these growing needs, the Depart-
ment of Energy established the Center for Ad-
vanced Mathematics for Energy Research Applica-
tions (CAMERA). Jointly funded by the O�ce of Ad-
vanced Scienti�c Computing Research (ASCR) and
the O�ce of Basic Energy Sciences (BES) within
DOE’s O�ce of Science, CAMERA is comprised
of coordinated teams of applied mathematicians,
computer scientists, beam-line scientists, materials
scientists, computational chemists, and so�ware ar-
chitects, all focused on solving challenging science
problems.

CAMERA identi�es areas in experimental sci-
ence that can be aided by new mathematical insights,
develops the needed algorithmic tools, and delivers
them as user-friendly so�ware to the experimental
community.

Application areas include X-ray sca�ering and
ptychographic imaging, reconstruction and analysis
of imaged materials, chemical informatics for anal-
ysis of crystalline porous materials, fast methods
for electronic structure calculations, reconstruction
methods for emerging experiments at X-ray free-
electron lasers, autonomous control of experiments,
and real-time streaming for automatic feedback and
reconstruction.

CAMERA has partnership projects with DOE
light sources (ALS, APS, NSLS-II, SSRL, and LCLS),
DOE Nanoscience Centers (Molecular Foundry and
CFN), and a host of other national and interna-
tional labs, including LANL, LLNL, NIST, DESY,
BESSY, ESRF, E-XFEL, SSRF, CSC, CNS, Diamond,
and industrial collaborators including Intel, GE,
Dow, Bosch, and Samsung.

CAMERA focuses on four key questions:

• How canmathematically correct inverse
problems be formulated and e�ectively
solved to extract information from dif-
ferent experimental techniques?

Recent work includes new methods for
�uctuation sca�ering and single particle
imaging for the LCLS, new methods for
ptychographic reconstruction, and fast
methods for SAXS, WAXS, and GISAXS.

• Once this information is collected, how
can it be e�ectively analyzed?

Recent work includes imaging algorithms
to auto-detect �bers and breaks in materi-
als, deep learning for X-ray di�raction
and recognition, and new mixed-scale
dense deep convolution neural networks
for image classi�cation.

• What is the best way to use computing
resources (embedded in detectors vs. lo-
cal hardware vs. remote supercomput-
ers) to quickly analyze results and guide
new experiments?

Recent work includes merging new algo-
rithms, GPU accelerators and customized
work�ows for real-time streaming pty-
chography, and Kriging optimization to
automatically steer autonomous X-ray
sca�ering experiments.

• How can algorithms, data, tools, and an-
swers be shared across the community?

Recent work includes developing Xi-
CAM, a combination GUI, python plugin
environment and remote work�ow man-
ager for synchrotron data, now in use at
multiple facilities.
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CAMERA began in 2010 as a three year LDRD
project at LBNL. It then expanded to a two year
pilot project supported by ASCR and BES within
DOE’s O�ce of Science, mostly focused on work
at the Advanced Light Source. Since 2015, it has

been supported by DOE to work with multiple fa-
cilities. CAMERA now fosters collaborations across
the DOE landscape of light sources, with growing
interactions with nanoscience centers and interna-
tional collaborators.
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Current CAMERA projects include:

• M-TIP for X-FEL �uctuation scattering
and single particle imaging

Multi-tiered iterative phasing for re-
constructing structure from X-ray free-
electron laser data at the LCLS.

• Surrogate model approach for optimiz-
ing autonomous experimentation

Kriging coupled to optimization and arti�-
cial intelligence for autonomous steering
of experiments at NSLS-II.

• Machine learning for biological and ma-
terials images

Mixed-Scale Dense convolution neural
networks for automatic image segmenta-
tion at the NXCT and for sub-grid learn-
ing/reconstruction of missing phases and
data in tomography at the ALS and CWI.

• PEXSI for electronic structure

Pole Expansion and Selected Inversion
(PEXSI) method for fast solutions to Kohn-
Sham density functional theory for the
Molecular Foundry and LLNL.

• Ptychographic reconstruction

SHARP (Scalable Heterogeneous Adap-
tive Real-Time Ptychography) algorithms
for ptychographic reconstruction leading
to faster, brighter and sharper methods
for the ALS, SSRL, and LCLS.

• X-ray scattering and CD-SAXS/CD-
GISAXS

Fast GPU-based methods using the
Distorted Wave Born Approximation
(DWBA) for CD-SAXS and CD-GISAXS
for APS, NIST, and the ALS.

• Automatic structure recognition for ce-
ramic matrix composites and scattering
experiments

Automatic structure identi�cation for ma-
terials together with machine learning for
sca�ering with the ALS and GE.

• Algorithms and tools for accelerating
nanoporous materials discovery

Fast methods for high-throughput ma-
terial characterization for the Molecu-
lar Foundry, EFRC for gas separations
relevant to clean energy technologies,
Nanoporous Materials Genome Center,
and the Hydrogen Materials Advanced
Research Consortium.

• Real-time streaming, analysis, and feed-
back of synchrotron data as it is being
collected

An end-to-end environment in which
data is collected from fast detectors and
streamed to algorithms for on-the-�y re-
construction, displayed as the material
is scanned. A ptychography version,
Nanosurveyor, is currently in production
use at the ALS.

• Xi-CAM:A community platform for syn-
chrotron experiments

Xi-CAM was developed as a GUI provid-
ing an applications plug-in environment
and remote compute work�ow manager
for synchrotron experiments, using col-
laborative components from the larger
community, including contributions from
NSLS-II, SSRL, ESRF, APS, NIST, DESY,
and ALS.

• Bringing user communities together

CAMERA workshops brought together
developers and installed their tomogra-
phy packages in a common base for anal-
ysis, assessment, and further develop-
ment. Participants included members
from APS, ORNL, KIT, Diamond, LLNL,
SSRL, NCEM, CWI, CSIRO, DMEA, UCSF,
NSLS-II, Petra, Max IV, and SLS.

• Summer schools for young scientists

CAMERA ran summer schools for young
scientists to prepare them for cross-
disciplinary work at DOE facilities: (1)
2016 Workshop: Experiment, algorithms,
and computing for GISAXS; (2) 2016
Workshop: Fast and accurate new meth-
ods for electronic structure simulation.
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By reaching across traditional boundaries,
brand-new mathematics can be built that can
help analyze and characterize experimental
data.

Traditionally, it takes considerable time
for new mathematical ideas to migrate to user
communities. Bringing mathematicians and
experimentalists together accelerates the de-
velopment and early adoption of new math-
ematics and algorithms. Including computer
scientists ensures that the resulting codes will
be e�cient and make use of advanced com-
pute resources. Engaging so�ware engineers
underscores that codes must be robust and
maintainable.

CAMERA is structured around an inner
core of scientists working on team projects,
developed through the guidance of the larger
community. Each cross-disciplinary team fo-
cuses on a particular application area. Partici-
pants are typically part of multiple teams, and
vertical integration allows rapid feedback.

Close connection of mathematics, experimental
expertise, and so�ware development steers projects
more e�ciently toward meeting user needs.

Capitalizing on shared expertise

Sometimes seemingly di�erent problems are in
fact linked, and share common mathematical so-
lutions. Matrixing mathematicians and scientists

into more than one group creates cross-fertilization.
Common questions emerge, and mathematics can
be built that serves multiple projects.

Working together, we have seen that advances in
such diverse �elds as computational harmonic anal-
ysis, PDE-based techniques for image segmentation,
graph theoretic approaches, dimensional-reduction
and manifold embedding, di�usion maps and non-
linear tensor schemes, sparse and compressed ap-
proximation methods, and new approaches to oper-
ator decompositions, can be cross-fertilized across
challenges at the facilities.

�is cross-fertilization is apparent in a node-edge
graph showing how di�erent types of mathemat-
ics come into play in more than one �eld, and how
mathematics in one particular application can sug-
gest new ideas when a�acking a di�erent area.
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Interconnections between mathematics,
applications, and collaborators

Building on core and applied research:

CAMERA builds and captilizes on a wide-
spectrum of core and applied research supported
and performed across DOE. ASCR base research in
mathematics and computer science, BES work at fa-
cilities, and joint SciDAC e�orts across the O�ce of
Science are foundations on which CAMERA e�orts
are built. As just a few examples:

• Core research on the M-TIP approach
�uctuation scattering and onmaterials discov-
ery: developed under ASCR base math.

• Core researchwork on image analysis: de-
veloped under ASCR base math, base computer sci-
ence, and a DOE early career award.

• Core research work on PEXSI for density
functional theory: developed under ASCR base
math, SciDAC partnerships, and a DOE early career
award.

• Core research on work�ows in CAM-
Link: developed under ASCR base computer sci-
ence.

• Core research on algorithms for inverse
reconstruction for scattering and community
so�ware platforms: developed under ASCR base
math, at the light source facilities, and under a DOE
early career award.

Fundamental support is crucial, and provides
much of the initial insight, mathematical models
and algorithmic tools that CAMERA then exploits.

CAMERA can be thought of as a graph with
nodes and links. �e nodes are people, performing
research supported by many programs throughout
DOE. CAMERA capitalizes on this work, and helps
support and link together collaborations aimed at
meeting the needs of DOE facilities.
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Engagement with the Community
Four types of engagements play valuable roles:

• Teams: Cross-disciplinary teams focus on
developing the mathematics, algorithms, prototype
codes, and robust so�ware to tackle current and
emerging facility challenges. Teams last for the du-
ration of a project, and scientists at other facilities
o�en collaborate on a speci�c project.

• Visitors: Short-term visitors a�end work-
shops, learn how to run codes, and o�er valuable
insight into how to modify and extend the underly-
ing mathematics, algorithms, and so�ware to meet
their own speci�c needs. Examples are the 2016 and
2017 tomography workshops.

• Exchange with other Labs: During a
project’s lifetime, collaborators are matrixed into
CAMERA and into other DOE facilities in order to
accelerate advancement. �ey communicate needs
and help guide conversations in which people from
di�erent disciplines frame questions and goals.

• Community So�ware: Algorithms are de-
livered as so�ware and shared across the DOE land-
scape. CAMERA’s Xi-CAM is a GUI, connecting
to multiple functionality through a plug-in envi-
ronment, and executes remote compute work�ow

manager for synchrotron experiments. It embraces
collaborative components from the larger commu-
nity, including contributions from NSLS-II, SSRL,
ESRF, APS, NIST, DESY, and ALS.

• Additional Partners: Additional institu-
tions beyond DOE light sources, nano-science cen-
ters and other DOE Labs are valuable partners:

• UC Berkeley is a rich resource of related re-
search and people, including faculty, exter-
nally supported postdocs and new graduate
students. CAMERA works closely with many
Berkeley departments, including Computer
Science, Statistics, Materials Science, Chem-
istry, and Mathematics.

• Close ties with the Moore-Sloan Berkeley In-
stitute for Data Science (BIDS) connect our ef-
forts to data science. Several CAMERA mem-
bers are also BIDS Fellows.

• CAMERA has partnered with the NSF-funded
MSRI to run joint summer schools, and shares
researchers with the NSF STROBE Center.

• Several international institutions have pro-
posed linkage to their own e�orts, including
those in Germany, the UK, and China.
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Xi-CAM: Synchrotron experiments analysis
so�ware: contributions from NSLS-II, SSRL, ESRF,

APS, NIST, DESY, and ALS

How are projects selected?

CAMERA has focused on projects identi�ed
“from the ground up,” visiting DOE light sources mul-
tiple times, gathering information from beamline
scientists about their needs, and working together
to understand the scienti�c challenges.

CAMERA tries to select projects that meet the
following criteria:

• Demand: Is there a need and demand for the
project from multiple groups?

• Available Expertise: Does CAMERA have,
or can we connect to the needed expertise?

• Time Scale for Success: How long can the
user wait? Is this urgent, or is there time to
perform the required research to develop new,
and potentially more powerful tools?

• Disruption: Do current solutions work well
enough? Is there tolerance for transitioning
to new technologies, which may cause inter-
ruptions?

• Plausible Delivery: Is there time and a rea-
sonable plan to deliver useable so�ware?

• Support Infrastructure: Are the people in
place to support and maintain the sotware
that results from new algorithms?

Cultural and sociological challenges:
Getting teams to work together

Building e�ective teams has challenges. Lan-
guage and cultural barriers between experimental-
ists, mathematical scientists and so�ware engineers
are obstacles. Each brings di�erent requirements
and di�erent answers to questions such as:

• When is something “done”? What is the
de�nition of success? A journal article? A pro-
totype code? Working supported so�ware?

• How long should a project take? Someone
may want a slightly be�er algorithm sooner,
rather than wait to develop the mathematics
behind a new approach.

• Should a new algorithm replace every-
thing before it can be used? Or, can multi-
ple overlapping so�ware exist side-by-side?

• How should credit be shared among sci-
entists from di�erent communities?

�ese questions are important. It can take many
months for a team to learn to speak the same lan-
guage and understand common questions and goals.

An essential element of success is the locality of
these teams. Members work together at the same
institution with o�ces close by. �estions can be
answered quickly, and design decisions can be made
rapidly as projects evolve.

Developing a cohesive strategy
�e best results occur when the need is identi-

�ed, the outcome is clearly de�ned, and when all
parties are invested.

Projects need to align with the scienti�c strategy
of the institution and support from management is
important. At the same time, individual scientists
need to be enthusiastic about the collaboration, so
that they can drive direction and goals.

�is is a delicate balance. Before undertaking a
project, CAMERA tries to ensure that the project is
relevant and needed. Input across multiple levels of
management at an institution is encouraged.
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CAMERA has had signi�cant impact in the de-
velopment and adoption of new mathematical tech-
nologies for DOE facilities, with particular a�ention
on the light sources, and growing connections with
the nanoscience centers. Looking to the future, sev-
eral paths forward are apparent.

Blueprints for successful projects

Successful projects require participants and col-
laboration across �elds, interests, and institutions.
Di�erent projects require di�erent time scales and
di�erent amounts of research:

• Some of the projects have required ad-
vanced, long-term coremathematical research
in order to have practical implications for data
analysis at advanced facilities.

One example is CAMERA’s multi-tiered iter-
ative phasing techniques (M-TIP), in which
years of theoretical and algorithmic develop-
ment were needed in advance, leading up to the
now practical impact at the LCLS on �uctuation
sca�ering and single particle imaging.

Another example is the development of PEXSI
for fast electronic structure simulations based
on Kohn-SHAM DFT. �is took years of work
before it was able to have the large impact now
occurring.

�ese projects o�en build on core work initially
supported by other DOE sources, such as base
math, computer science, and SciDAC.

• Conversely, for some projects, needed
mathematics can be iteratively developed in
close collaboration with facility scientists.

A good example is CAMERA’s research on opti-
mized experimental control, developed jointly
with NSLS-II and CFN. Here, a CAMERA-
supported and jointly-supervised postdoctoral
fellow worked across labs to design a weighted
Kriging algorithm to automatically steer exper-
iments. Working together at the NSLS-II beam

line, they devised multiple optimization weight-
ing strategies.

• Some projects require integration and
guidance across facilities.

Xi-CAM so�ware development has taken key
pieces from a wide spectrum of collaborators
(NSLS-II, APS, SSRL, LCLS, NIST, ALS, etc.).
CAMERA’s approach is not to reinvent or dupli-
cate what is available from others, but instead
to work together to build a community project.

Path forward: Capitalizing onmomentum

Continuing the momentum of current CAMERA
projects is important. As examples:

• M-TIP. �e M-TIP approach is a powerful
technique to analyze data coming from X-
FELs. Future M-TIP mathematical develop-
ment is needed to (a) build noise models in a
systematic way, appropriate for the detector
and collection mechanisms; (b) model more
physical constraints in the algorithm to im-
prove the reconstruction; and (c) accelerate
the algorithms through remapping onto ad-
vanced emerging high performance comput-
ing architectures. �ese improvements will
greatly improve the robustness and accuracy
of reconstruction techniques for XFELs.

• Autonomous Optimization of Experi-
ments. �e joint NSLS-II/CFN/CAMERA
project has immense potential, coupling ad-
vanced optimization, high-dimensional sam-
pling, and arti�cial intelligence together to au-
tonomously steer experiment and e�ciently
use resources. Much more needs to be done,
including: (a) selected optimal weighting
strategies; (b) coupling to more advanced op-
timization methods; and (c) adding more so-
phisticated constraints in the decision tree.
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• Mixed-Scale Dense Machine Learning
CNNs. CAMERA’s MS-D is already being
used by over 150 separate users across such
�elds as biology, pa�ern recognition, electron
microscopy, tomography for metallic compos-
ites, MRI scans, segmentation of satellite im-
ages, and sonar imagery. One promising area
is the reconstruction of sharp tomographic
images from undersampled data. For time-
varying tomography, reconstructing images
from far fewer scans will reduce the time re-
quired and reduce radiation exposure.

• Advanced Methods for Electronic Struc-
ture. PEXSI is a powerful approach for
ground-state calculations, and has been in-
corporated into a large number of packages.
For KSDFT with high �delity functionals such
as the hybrid functional, the main challenge
is the Fock exchange operator. Jointly with
LBNL Math, we will continue development
of the adaptively compressed exchange (ACE)
formulation, which reduces the cost of hybrid
functional calculations by 5-10 fold without
loss of accuracy, and extend its capability to
large scale ab initio molecular dynamics.

• Automatic Techniques for Real-Time
Image Analysis. CAMERA image character-
ization methods, including methods that seg-
ment boundaries, extract �ber and crack struc-
ture in materials, and exploit machine learn-
ing to identify sca�ering pa�erns, are ripe for
further development and application. �is in-
cludes the addition of methods from topologi-
cal data analysis exploiting persistence theory,
and graph-theoretic classi�cation techniques.
New applications include NCEM applications
on quantifying pore structure evolution, an-
alyzing thin �lms, and capturing order and
structure in colloidal nanocrystal �lms.

• Real-time streaming analysis. �e CAM-
ERA so�ware environment for streaming,
such as NanoSurveyor for ptychography, rep-
resents a future in which detectors, data col-
lection, and algorithms come together at a
beamline with local compute resources to
provide on-the-�y real-time analysis and re-
construction. As more data is collected over
shorter time scales, it becomes impractical to
ship all the data to a remote resource and de-

cide later what is worth keeping. Experimen-
talists need feedback as data is collected to
make decisions and guide experiment. CAM-
ERA is starting to export its real-time envi-
ronment to other beamlines and facilities.

• Xi-CAM. �e CAMERA Xi-CAM syn-
chrotron platform is being used at a vari-
ety of beamlines around the country. New
functionalities, including �uctuation scat-
tering reconstruction, single particle M-TIP,
autonomous experimental control using Krig-
ing, new tomography tools (such as the Liv-
ermore Tomography Tools-LTT), are being
incorporated. We are in the process of adding
more automatic access to remote compute
resources, including the DOE HPC resources
(ALCF, OCLF, and NERSC). Our intent is to
continue to grow this resource, welcoming
contributors from across the community.

Path forward: New projects

Considerable community interest has been ex-
pressed in taking CAMERA algorithms to new areas.
To name just two:

• XPCS, powder di�raction, and electron
microscopy: While very di�erent experi-
mental techniques, we believe that CAM-
ERA’s multi-tiered iterative phasing (M-TIP)
approach has applicability in these areas. �e
fundamental idea behind M-TIP, namely to
decompose the reconstruction into several
underdetermined subproblems that can be
solved e�ciently via application of carefully
designed projection operators, can be tar-
geted at multiple �elds. �ese projection oper-
ators, once they are customized for the partic-
ular physics and constraints, are then applied
in an iterative scheme which converges to the
correct solution.

• Machine learning formaterial character-
ization: CAMERA’s Mixed-Scale Dense con-
volution neural networks require far less
tagged training data than other approaches
and allow identi�cation and categorization
of materials. Using these techniques, a large
number of biological applications, including
cell classi�cation, reconstruction of brain ar-
chitecture, and crack identi�cation, are now
being explored by scientists world-wide.
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More mathematics can be developed to meet
the needs of BES facilities. For example, we have fo-
cused on only a few applications at two nanoscience
centers, namely LBNL’s Molecular Foundry and
BNL’s Center for Functional Nanomaterials. New
mathematical opportunities can be explored at these
and other DOE nanoscience centers.

Path forward: �e so�ware challenge
CAMERA is building so�ware for the commu-

nity, with many more algorithms and functionality
in the pipeline.

• Documentation and user support: We
need to provide documentation, available sup-
port, and development paths for contributors
to add to existing codes.

• Test data sets and examples: Test data sets
are needed, complete with examples and doc-
umentation of the accuracy and e�ciency of
computed results.

• Curated repositories: Codes must be sus-
tained. �ey must always be accessi-
ble, compile, and embrace new features as
they are developed, while maintaining back-
compatibility whenever possible. Maintain-
ing this so�ware is important

Path forward: �e data challenge
Profound data challenges are coming from the

facilities, including capturing and storing increasing
amounts of data, annotating and archiving this data,
and providing accessibility across multiple institu-
tions. Carefully targeted mathematics can play a
key role:

• Deciding what data to keep: Forthcoming
acquisition rates will make it hard to keep
all data in raw, unprocessed form. Advanced
mathematics will be needed to quickly ana-
lyze data, assess whether the experiment is as
planned, and determine what data to keep.

• Providing e�cient and common descrip-
tors for data: Data will need to be analyzed
and stored in reduced form, and this reduc-
tion will require new mathematics. Automatic
tagging can be augmented by appropriate ma-
chine learning algorithms and characteriza-
tion operators. Multi-modal analysis will re-
quire the design and development of multi-
tiered projection operators that capitalize on

applying simultaneously constraints across
di�erent experiments.

Fast networks, rapid data storage, and advanced
computing facilities are critical. �eir utility will be
enhanced by complementary mathematics derived
in tandem.

Path forward: New areas
Many interested parties have suggested expand-

ing CAMERA to new areas, including biologists,
earth scientists, and computer scientists. We have
already been able to identify strong potential part-
ners at JBEI where mathematics can make valuable
contributions. CAMERA can have an impact on
many other parts of the O�ce of Science.

At its core, this is an expression of interest in
linking mathematics to more �elds and an apprecia-
tion of what cohesive teams can accomplish.

Such expansions have potential, but need to be
approached in the same systematic manner in which
CAMERA was initially formed. Mathematical ex-
pertise and scienti�c interests need to be identi�ed.
Mathematical problems need to be well-formulated.
Key people need to link together to a�ack clearly
articulated problems within de�nable timeframes.

When appropriate, CAMERA can expand to
these and other new and needed areas.

Path forward: Finding new people
Sharing people and projects has advantages:

• Jointly supervising CAMERA-supported post-
doctoral fellows works well, and these
younger scientists help teams make progress
together.

• Workshops bring people together on a com-
mon ground. Researchers are comfortable
pointing out advantages and disadvantages
of a wide collection of techniques, and help
identify areas where new research is needed.

• Community projects such as Xi-CAM provide
a mechanism in which algorithms and so�-
ware can tested by the community.

�e CAMERA model
�e CAMERA model requires people, commit-

ment, and organization. With these components,
it provides a way to focus teams to accelerate the
application of mathematics to problems of DOE im-
portance.
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CAMERA Collaborators

D. Allan A. Aquila T. Caswell K. Champley B. Daurer F. DeCarlo E. Dill L. Fourcar
(BNL) (SLAC) (BNL) (LLNL) (Uppsala) (APS) (BNL) (Max Planck)

M. Fukuto C. Gati C. Gheller A. Gorel M. Grunbein D. Gursoy E. Herzig M. Hunter
(BNL) (SLAC) (CSCS) (Max Planck) (Max Planck) (APS) (Bayreuth) (SLAC)

R. Kirian J. Klein R. Kurta F. Maia A. Mancuso A. Mehta D. Mendez A. Perazzo
(Arizona) (NIST) (E-XFEL) (Uppsala) (E-XFEL) (SSRL) (Arizona) (LCLS)

L. Pellouchoud L. Richter A. Sakdinawat I. Schlichting A. Sepe R. Sierra J. Strzalka C. Sweeney
(SSRL) (NIST) (SLAC) (Max Planck) (SSRF) (SLAC) (APS) (LANL)

C. Tassone S. Venkatakrishnan K. Yager C. Yoon D. Prendergast J. Zhang
(SSRL) (ORNL) (BNL) (SLAC) (Molecular Foundry) (APS)
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CAMERA Sta� Members

J.J. Donatelli P.H. Zwart K. Pande D. Ushizima M. MacNeil T. Perciano S. Marchesini
(A,B) (A,B) (A,B) (C,G,I,L) (C,G,I,L) (C,D,G) (D,E)

D. Shapiro P. Enfedaque H. Chang D. Parkinson A. Hexemer R. Pandol� M. Noack
(D) (D) (D) (E,F) (F,G,H) (F,G,H) (M)

D. Kumar G. Freychet D. Pelt O. Jain S. Mo H. Krishnan L. Lin
(E,F,G) (H,M) (C,E,J) (I) (I) (C,D,E,F,G) (J)

C. Yang X. Li M. Haranczyk M. Shao Z. Hu J.A. Sethian
(J) (J) (K) (B) (A)

A=Fluctuation sca�ering/Single particle, B=Exafel, C=Image Analysis, D=Ptychography/streaming,
E=Tomography, F=Xi-CAM, G=GPU/Hardware acceleration, H=Sca�ering, I=Machine learning,

J=Electronic Structure, K=Chemical Informatics, L=BioInformatics, M=Optimization
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M-TIP for X-FEL �uctuation
sca�ering

Electronic structure
algorithms Autonomous experiments

Mixed-Scale Dense
Networks

M-TIP for X-FEL single
particle imaging SHARP: Ptychography

Real-time streaming CMC structure recognition
and Machine Learning Materials discovery

X-ray sca�ering Xi-CAM for synchrotrons Community workshops
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New Mathematics Enables Fluctuation X-ray Scattering
at X-ray Free-Electron Lasers

(Joint Collaboration: LCLS, SLAC, Stanford, European XFEL, Max Planck Institute,
Uppsala University, Arizona State University, and CAMERA)

Overview
�e atomic structure and function of macro-

molecules, such as viruses and proteins, play funda-
mental biological roles, and probing their behavior
has been a major challenge over the last century.
Although traditional imaging techniques, such as
X-ray crystallography, and more recent techniques,
such as cryo-electron microscopy, have been suc-
cessful at determining static structures to high res-
olution, many scienti�c questions cannot be e�-
ciently studied with these methods.

One way to study the behavior of molecules in
near-native environments is to collect X-ray di�rac-
tion pa�erns from particles directly in solution.
However, in traditional solution sca�ering meth-
ods, such as small- and wide-angle X-ray sca�ering
(SAXS/WAXS), the time it takes for the X-rays to
interact and sca�er o� the particles is longer than
the time it takes for the particles to undergo full
rotation in the solution, resulting in “motion blur”
that drastically reduces the information content.

�e recent emergence of X-ray free-electron
lasers (X-FELs), such as at the LCLS, have created an
opportunity to overcome this challenge. X-FELs pro-
duce ultrabright and ultrashort X-ray pulses that can
image particles at timescales far below rotational
di�usion times, avoiding motion blur. Although ex-
perimental “�uctuation X-ray sca�ering (FXS)” was
originally proposed in the 1970’s, the challenge of
determining 3D molecular structure from FXS data
remained an open problem for over 40 years.
A New Approach

To address this problem, CAMERA mathemati-
cians Je�rey Donatelli and James Sethian, and physi-
cal bioscientist Peter Zwart developed a new mathe-
matical algorithm called multi-tiered iterative phas-
ing (M-TIP) which, for the �rst time ever, was able
to determine ab initio 3D molecular structure from
FXS data, solving the 40 year old open problem.

However, collecting and extracting accurate FXS
data is itself challenging. Data is o�en corrupted
with large degrees of noise, systematic issues, and
incompleteness. To overcome this challenge, CAM-
ERA physicist Kanupriya Pande developed data pro-

cessing techniques to correct and extract robust FXS
data from LCLS experiments and made them avail-
able in the Online Data Analysis (OnDA) so�ware
as a user-friendly GUI at X-FELs.

Using these techniques, CAMERA, working
with an international team, demonstrated the �rst
successful 3D reconstruction from both single par-
ticle and FXS data. As a result, FXS is now being
looked at as a potential routine LCLS experiment,
poised to tackle biological questions not answerable
with other techniques.

Mathematical Approach
An FXS experiment takes a large num-

ber of independent X-ray di�raction snapshots
J (1), . . . , J (Ndp), of a sample, with one or more par-
ticles in the beam per shot. From these images, for
every pair of radii (q, q′), one calculates the average
angular cross-correlation function

C(q,q′,∆φ)=
1

Ndp

Ndp∑
k=1

∫ 2π

0
J (k)(q, φ)J (k)(q′, φ+∆φ)dφ

Angular correlations of a di�raction image.
If orientations are uniformly sampled from the

rotation group SO(3) and X-ray exposures are
taken below rotational di�usion times, then, when
averaged over su�ciently many images, the correla-
tion function can be directly related to the spherical
harmonic coe�cients of the 3D intensity function
I via the Legendre polynomial decomposition

C(q, q′,∆φ) =
1

4π

∞∑
l=0

Bl(q, q
′)Pl(x(q, q′,∆φ)),

which, up to a scaling factor, the Legendre expan-
sion coe�cients Bl can be related to the intensity
spherical harmonic coe�cients via

Bl(q, q
′) =

l∑
m=−l

Ilm(q)I∗lm(q′),
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where

x(q, q′,∆φ) = cos θq cos θq′+sin θq sin θq′ cos ∆φ,

θq = arccos( qλ2 ), and λ is the X-ray wavelength.
�e 3D intensity function is related to the electron
density ρ of the molecular structure via I = |ρ̂|2,
where ρ̂ is the Fourier transform of ρ.

Determining 3D molecular structure from cor-
relation data involves extracting the intensity func-
tion from the Bl coe�cients, which can be cast as
a hyper-phase problem, in addition to the classical
phase problem of recovering the density ρ from its
intensity function, both of which are challenging
high-dimensional non-convex inverse problems.

CAMERA’s M-TIP algorithm meets these chal-
lenges by decomposing the inverse problem into
several underdetermined subproblems that can be
solved e�ciently via application of carefully de-
signed projection operators. �ese projection oper-
ators are then applied in an iterative scheme which
converges to the correct solution.

ρ(r) ρ̂(q) I(q) Ilm(q)

Inewlm (q)Inew(q)ρ̂new(q)ρnew(r)

Bl(q, q
′)

Real-Space

Fourier | · |2

Constraints

Transform
Spherical

Harmonic Transform

Inverse Spherical
Harmonic Transform

Inverse Fourier
Transform

PA, PC

PM

PS , PS+,⊗
⊗

⊗PG
PSτ , PS+τ ,

FXS Data
Phases Correlation Projection

Real-Space

Projections

Magnitude Projection

Flowchart description of the M-TIP algorithm.

Examples/Results
Determining 3D molecular structure from corre-

lation data involves extracting the intensity. CAM-
ERA used the above M-TIP algorithm to demon-
strate the �rst successful 3D reconstruction of two
viruses, RDV and PR772 from angular correlations
of single-particle LCLS FXS data in a collaboration
with an international team. Janos Hajdu’s group at
Uppsala performed sample preparation. �e single-
particle initiative, led by Andy Aquila at SLAC and
with members from over 50 di�erent universities
and laboratories, organized data collection. Ruslan
Kurta and Adrian Mancuso from the European XFEL
performed part of the data processing.

CAMERA also used this approach to demon-
strate the �rst successful 3D reconstruction of the
PBCV-1 virus from angular correlations of multiple-
particle LCLS FXS data, with 50-200 particles per
shot. Ilme Schlichting’s group from Max Planck
provided the sample and initial data processing.

CAMERA is using these algorithms to: i) deter-
mine 3D molecular structure of the CroV virus from
single-particle LCLS FXS data with members of Max
Planck and ii) determine 3D molecular structure of
the Trinity virus from single-particle LCLS FXS data
with members of Uppsala and the European XFEL.
CAMERA is leading the design and data collection
strategies for FXS experiments at the LCLS, pro-
cessing correlation data, providing so�ware for FXS
data analysis, and determining higher-resolution
3D structures of PBCV-1 and ribosomes with collab-
orators from SLAC, Stanford, and Arizona State.

M-TIP reconstructions of RDV (top) and PR772
(bo�om) from single-particle FXS.

M-TIP reconstruction of PBCV-1 from
multiple-particle FXS.

FXS experiment at LCLS: Richard Kirian (ASU),
Peter Zwart (LBNL), Peter Walter (SLAC), Jef-
frey Donatelli (LBNL), Mark Hunter (SLAC),
Kanupriya Pande (LBNL), Cornelius Gati
(SLAC and Stanford), and Chuck Yoon (SLAC).
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Advanced Algorithms Signi�cantly Boost Information
Extracted from Single-Particle Di�raction Data

(Joint Collaboration: LCLS, SLAC, Stanford, LANL, NERSC, and CAMERA)

Overview
Biological structures are not static, and study-

ing their inherent conformational �exibility is nec-
essary in order to fully understand their behavior.
However, fully probing the continuous landscape of
conformations of important biological molecules is
extremely challenging, requiring a vast amount of
data in order to completely sample all possible con-
�gurations. Current imaging techniques study only
tiny fractions of these conformational landscapes.

Upcoming powerful X-ray free-electron lasers
(X-FELS) may provide an avenue for studying signif-
icant fractions of these conformational landscapes.
Planned upgrades, such as at LCLS-II, promise to
provide even brighter X-ray pulses with data collec-
tion rates at 10 KHz initially, and potentially up to
1 MHz in the future. Using this upcoming technol-
ogy, single-particle di�raction (SPD) experiments,
in which X-ray di�raction pa�erns are collected
from individual molecules one at a time, may allow
exploration of these conformational landscapes.

However, e�ciently analyzing vast amounts of
SPD data is challenging and complex, since orien-
tations and conformations of the particles are un-
known, complex phases are not measured, and data
is o�en extremely noisy. Previous approaches are
based on determining the orientations and confor-
mations of the particles separately from the phases
and the molecular structure, and thus are unable to
make use of physical constraints on the molecular
shape, such as size, symmetry, or positive density, to
help in the orientation determination and conforma-
tional sorting step, ultimately limiting the structural
features that can be resolved.

A New Approach
CAMERA mathematicians Je�rey Donatelli and

James Sethian and physical bioscientist Peter Zwart
recently developed a new algorithmic approach to
SPD reconstruction that signi�cantly boosts the
amount of information that can be extracted from
these experiments, potentially allowing exploration
of a much larger portion of the desired conforma-
tional landscapes. �is approach, based on an ex-

tension of the multi-tiered iterative phasing (M-TIP)
algorithm that they previously developed for �uctu-
ation X-ray sca�ering reconstruction, makes maxi-
mal use of prior knowledge about what molecules
look like throughout the reconstruction procedure.
�is algorithm was able to determine 3D structure of
single- and multiple-state structures from a record-
se�ing low number of di�raction images.

Mathematical Approach
An SPD experiment collects several X-ray

di�raction pa�erns J (1), . . . , J (Ndp) of individual
molecules, with only one particle in the beam at a
time. Each image samples the 3D intensity func-
tion Is of the molecule along a 2D curved slice at
a random conformational state sk and orientation
Rk , which can be expressed in polar coordinates as

J (k)(q, φ) = I(Rk)
sk

(q, θ(q), φ),

where I(R)
s (q) = Is(Rq), θ(q) = arccos(qλ/2),

and λ is the X-ray wavelength. �e 3D intensity
Is is related to the electron density ρs of the s-th
conformational state of the molecule via Is = |ρ̂s|2,
where ρ̂s is the Fourier transform of ρs.

Each SPD image (le�) samples a 2D curved slice of the
3D intensity function (right).

�e goal of an SPD experiment is to determine
3D molecular structures of conformational states of
the imaged sample. �is requires determining ori-
entations Rk and states sk, corresponding to each
image, assembling the oriented and classi�ed im-
ages into their corresponding 3D intensity volumes,
and determining missing complex phase informa-
tion to retrieve the electron densities of the structure.
Furthermore, SPD images are contaminated with
signi�cant noise, which must be treated.
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CAMERA’s M-TIP algorithm solves this prob-
lem by simultaneously solving all subproblems in
an iterative projection framework, leveraging real-
space constraints on electron densities of structures
to signi�cantly boost the amount of extractable in-
formation from the images. �e algorithm exploits
the mathematical relationship between the circu-
lar harmonic coe�cients J (k)

m of an image and the
spherical harmonic coe�cients Ilm, given by

J (k)
m (q)=

∞∑
l=|m|

l∑
m′=−l

Dlmm′(Rk)P
m
l (cos θ(q))Ilm′(q),

where the Dlmm′ are Wigner-D functions and the
Pml are associated Legendre functions. �is formu-
lation allows M-TIP to accelerate orientation match-
ing through fast Wigner-D transforms and provides
interpolation from the 3D intensity functions to the
2D images, and vice-versa, with spectral accuracy.

ρs(r) ρ̂s(q) Ĩs(q) (Ĩs)lm(q)

ρ̂mod
s (q)ρmod

s (r)

J
(1)
m , . . . , J
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m
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Flowchart of single-particle M-TIP algorithm.

Examples/Results
CAMERA used the single-particle M-TIP al-

gorithm to reconstruct the 3D structure of the
retinoblastoma protein (prB) bound to E2F from only
192 photon-limited simulated single-state di�rac-
tion images, each with less than 0.1 photons per
pixel at the image boundaries, se�ing a new record
for the fewest number of images needed to deter-
mine 3D structure from shot-noise limited data.

M-TIP was also able to reconstruct the 3D struc-
tures of both the open and closed states of a sialic
acid binding protein (SiaP), from only 384 noisy
simulated di�raction images, which were randomly
mixed between the two states.

1

2

3

4

5

# photons

Examples simulated shot-noise contaminated SPD im-
ages for (le�) prB bound to E2F and (right) the open and
closed states of SiaP.

M-TIP reconstructions of (le�) prB bound to E2F and
(middle & right) the open and closed states SiaP.

�is approach was used to analyze experimental
SPD data of the PR772 virus, collected at the LCLS.
Here, the single-particle M-TIP algorithm was able
to exploit the icosahedral symmetry of the virus to
determine 3D molecular structure from a single im-
age, allowing a separate 3D view of each virus. �e
data was collected by the single-particle initiative
and preprocessed by Chuck Yoon at SLAC.

M-TIP reconstructions of the PR772 virus from a sin-
gle experimental SPD image by leveraging icosahedral
symmetry.

CAMERA’s single-particle M-TIP algorithm was
identi�ed as a key routine for single-particle imag-
ing at the LCLS, as part of the Exascale Computing
Project (ECP) “Data Analytics at Exascale for Free
Electron Lasers”. CAMERA is working with SLAC,
Stanford University, LANL, and NERSC to port the
single-particle M-TIP algorithm to exascale super-
computer architectures in order to provide real-time
user feedback for LCLS SPD experiments.

CAMERA scientists P. Zwart, K. Pande, and J. Donatelli.
Pande holds a 3D printed virus reconstructed by M-TIP
from LCLS data.
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Autonomous Steering of X-Ray Scattering Experiments
through Optimization and Arti�cial Intelligence

(Joint Collaboration: NSLS-II, (BNL), CFN (BNL), and CAMERA)

Overview
X-ray sca�ering experiments are ofen lengthy

procedures in which the experimentalist a�empts
to �nd the characteristics of a sample, subject to
parameters like pressure and temperature. As the
number of these parameters grow, the human exper-
imentalist faces challenges visualizing the data and
making informed decisions for the next experiment
based on previous ones.

A common solution is to perform experiments
randomly or at discrete predetermined points. Al-
though “intuitively chosen”, random or predeter-
mined experiments turn out to be highly ine�cient
and biased. In addition, experimentalists have to ob-
serve the experiment constantly to react to changes
when necessary. Beam line scientists work around
the clock for days in a row to obtain a high-quality
experimental result.

Steering through mathematical optimization
Instead, one can exploit mathematical optimiza-

tion to make autonomous decisions based on past ex-
periments and without human interaction. A math-
ematical formulation reveals that the desired param-
eters for future experiments are, in fact, optima of a
complex high-dimensional error function. �is er-
ror function depends on the previously performed
experiments and their outcome. CAMERA brought
Brookhaven scientists Kevin Yager and Masafumi
Fukuto together with CAMERA members Marcus
Noack and Alexander Hexemer to tackle this prob-
lem and �nd a solution.

Technical Summary
Based on previously collected data, Kriging cre-

ates a surrogate model, which explains the observed
data optimally, and an error surface, which describes
uncertainties in the unexplored regions.

�e error surface de�nes the current estimated
error depending on available data. Maxima of this
error surface represent positions of the next ex-
periments, and an evolutionary optimization algo-
rithm �nds the maxima. Minima represent positions
where previous experiments have taken place.

Error surfaced computed by Kriging. Maxima rep-
resent next possible experiment positions. Minima
represent positions of previous experiments. Dots
show the data.

A�er the new experiment is executed, the data set
is updated and the process starts over.

�e error surface can be weighted to make com-
putation sensitive to certain model features.

Mathematical Approach
Kriging computes an interpolant that inher-

ently minimizes the uncertainty in between the data
points and also returns a numerical value for the
estimated error. Kriging estimates the function as
a linear combination of weights w and data points
ρ(pi). �e surrogate model is de�ned by

ρs(p) =
∑
i

wi(p) ρ(pi),

where ρs(p) is the surrogate model under investi-
gation and ρ(pi) are points of the model ρ at point
pi, probed by the previous experiments.

�e goal is now to minimize the mean squared
prediction error

E
(
ρ(p) −

∑
i

wi(p) ρ(pi)
)2

given by σ2 = C00 − wTCw − 2wTD, where

Cij = 1− γ(||pi − pj ||2),

Di = 1− γ(||p0 − pi||2),

where p0 is the position of the point to be estimated
and γ is the so-called variogram, which is an ar-
bitrarily chosen function that optimally describes
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the dependence of points at a certain distance. �e
variogram is de�ned as γ = 1 − e−ah, where h
is the Euclidean distance between two points. �e
error surface can be multiplied by the gradient of
the surrogate model to bias the procedure toward
areas comprising a high rate of change.

Results
�e method has successfully been used to image

several geometries autonomously at NSLS-II, drasti-
cally reducing the number of required experiments.
At beamline 11-BM, autonomous steering algorithm
was used to �nd the microscopic structure of the
sample seen in the �gure below.

Collaborators:
�e collaboration involves Kevin Yager and

Masafumi Fukuto from Brookhaven National Labo-
ratory and Marcus Noack from CAMERA.

• “Modern materials are increasingly complex,
owing to the number of components and the
wide range of possible processing histories. Ex-

ploring the phase/state diagrams of these ma-
terials is an enormous challenge. Working with
the CAMERA project, we have been developing
autonomous experimentation, wherein a ma-
chine can measure materials, and then auto-
matically select and perform subsequent exper-
iments. �is has the potential to revolutionize
materials discovery. CAMERA is developing the
algorithms necessary for autonomous decision-
making in an experimental context. �rough
this work, we have already performed �rst-of-a-
kind autonomous x-ray sca�ering experiments.”
Kevin Yager, BNL.

• “Steve Jobs once said ‘customers don’t know
what they want.’ We believe the situation is sim-
ilar for synchrotron experiments. Once the users
realize that autonomous experiments are possi-
ble at synchrotron facilities, they will change
the way they view and design their experiments
at beam lines. �is will give them an opportu-
nity to tackle more complex materials design
problems.” Masafumi Fukuto, BNL.

Top: Nanoparticle stain.
Bo�om=Autonomous in-
vestigation.

Each dot is an experiment. Far Le�=uniform choices. Near le�: Kriging choices.
Near right: Gradient-supported choices. Far right: Hybrid scheme.

Le�: M. Fukuto (BNL),
K. Yeager (BNL), and M.
Noack (CAMERA) run-
ning autonomous algo-
rithm. Right: with G. Do-
erk (BNL).
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CAMERA “Minimalist Machine Learning” Algorithms
Analyze Images Using Very Little Data
(Joint Collaboration: NCXT, UCSF, CWI, and CAMERA)

Overview
Images are everywhere. Smart phones and sen-

sors have produced a treasure trove of pictures,
many tagged with pertinent information identifying
content. Using this vast database of cross-referenced
images, machine learning algorithms can quickly
identify natural images that look like ones previ-
ously seen and catalogued. But what if you don’t
have so many tagged images?

In many research �elds, a large database of
tagged images is an unachievable luxury. For exam-
ple, biologists record cell images and painstakingly
outline the borders and structure by hand. It is not
unusual for one person to spend weeks segment-
ing a single fully three-dimensional image. �ese
few precious hand-curated images are nowhere near
enough for traditional machine learning.

A New Approach
To meet this challenge, CAMERA mathemati-

cians Daniël Pelt and James Sethian focused on ma-
chine learning with very limited amounts of data.
Traditional machine learning algorithms “learn” by
tuning a large set of hidden internal parameters,
guided by millions of tagged images, and requiring
large amounts of supercomputer time.

Instead, their goal was to �gure out how to build
e�cient mathematical “operators” that could greatly
reduce the number of parameters. �e resulting
“Mixed-Scale Dense Convolution Neural Network
(MS-D)” requires far fewer parameters, converges
quickly, and “learns” from a small training set.

�is approach is already being used to extract bi-
ological structure from cell images, and is poised to
provide a major new computational tool to analyze
data across a wide range of research areas.

To make the algorithm accessible to a wide set
of researchers, a CAMERA team led by Olivia Jain
and Simon Mo built a web portal “Segmenting La-
beled Image Data Engine (SlideCAM)” as part of the
CAMERA suite of tools for DOE.

Brief Technical Description
Many applications of machine learning for imag-

ing problems use deep convolutional neural net-
works (DCNNs), in which the input image and in-
termediate images are convolved in a large number
of successive layers, allowing the network to learn
highly nonlinear features. CAMERA researchers re-
alized that the usual downscaling and upscaling that
capture features at various image scales could be
replaced by dilated convolutions. Furthermore, al-
gorithms could be built that employ multiple scales
within a single layer, and densely connect all in-
termediate images. �eir new approach achieves
accurate results with few intermediate images and
parameters, eliminating both the need to tune hy-
perparameters and additional layers or connections
to enable training. Furthermore, the algorithm au-
tomatically adapts to di�erent problems, making it
easier to implement and use in real-world problems.
Mathematical Approach

Imagine training a network to classify images.
View an image as pixels x ∈ Rm×n×c with m rows,
n columns, and c channels, with image xj corre-
sponding to a single channel j of x. Many image
processing problems boil down to �nding a func-
tion f that takes a certain image x and produces an
output image y, i.e. f : Rm×n×c → Rm′×n′×c′ .

Convolutional neural networks (CNNs) model
the unknown f through connected layers. Each
layer i produces an output image zi ∈ Rmi×ni×ci ,
called a feature map, using the previous layer’s out-
put as input. �e input image x is the �rst layer z0,
with �nal layer the output image y.
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A schematic representation of a two-layer
CNN with input x, output y, and feature maps
z1 and z2. Arrows represent convolutions
with nonlinear activation.

Deep convolutional neural networks (DCNNs)
use a similar network architecture, but consist of
a larger number of layers, which enables them to
model more complicated functions. In addition, DC-
NNs o�en include downscaling and upscaling op-
erations between layers, decreasing and increasing
the dimensions of feature maps to capture features
at di�erent image scales.

A common DCNN architecture: Downward (upward)
arrows represent downscaling (upscaling). Dashed
arrows represent skip connections.

Mixed-Scale Dense networks: As an alternative,
CAMERA mathematicians introduced a “Mixed-
Scale Dense (MS-D)” architecture which (a) mixes
scales within each layer and (b) densely connects
all feature maps. Instead of downscaling and upscal-
ing to capture features at di�erent scales, the MS-D
architecture uses dilated convolutions, capturing ad-
ditional features. Instead of each layer operating at
a certain scale, each individual channel of a feature
map within a single layer operates at di�erent scale.

Schematic representation of an MS-D network. Col-
ored lines represent 3× 3 dilated convolutions: each
color represents a di�erent dilation.

�is mixed-scale approach alleviates many tradi-
tional stumbling blocks. First, large-scale image
information quickly becomes available in early net-
work layers through relatively large dilations, and
improves the results of deeper layers. Second, in-
formation at a certain scale can be used directly to
inform decisions at other scales without having to
pass through intermediate scales. No additional pa-
rameters have to be learned, resulting in smaller
networks that are easier to train. Finally, the net-
work can learn which combinations of dilations to

use during training, making identical Mixed-Scale
DCNNs applicable across di�erent problems.

Cell classi�cation: Using CAMERA’s MS-D algo-
rithm, researchers at NXCT automatically deter-
mined the internal structure of biological cells.
Avoiding countless hours required to hand-segment
cells to extract structure and di�erences between
healthy vs. diseased cells, the MS-D algorithm deter-
mined structures automatically, training with data
from seven cells. �e �gure shows raw data (a);
manual segmentation (b); and MS-D output with
100 layers (c) (Data: A.Ekman, C. Larabell)

a b c

Improving Tomographic Images: �e MS-D algo-
rithm is also being used to improved tomographic
images. To minimize damage to samples and enable
advanced dynamic experiments, one goal is to ac-
quire tomographic scans at a very low X-ray dose,
however resulting images are typically noisy. �e
MS-D network takes noisy input data and recon-
struct higher resolution images.
a b c

Tomographic images of a �ber-reinforced mini-composite,
reconstructed using 1024 projections (a) and 128 projec-
tions (b). In (c), the output of an MS-D network with image
(b) as input is shown. Small region indicated by red square
is enlarged in bo�om-right corner (Data: N. Larson).

Collaborators
Collaborators include researchers around the

world, including the National Center for X-ray To-
mography (NCXT), CWI, the Paul Scherrer Institute,
and EMAT, where it is being used to improve the
tomographic reconstruction of nanomaterials.

“�is new approach has the potential to radically
transform our ability to understand disease, and is
a key tool in our new Chan-Zuckerberg-sponsored
project to establish a Human Cell Atlas, a global
collaboration to map and characterize all cells in a
healthy human body.” Carolyn Larabell, UCSF and
Director of NXCT.
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CAMERA and Electronic Structure: Fast Methods for
Solving Density Functional �eory

(Joint collaboration: Molecular Foundry, Argonne, UC Berkeley, Duke, Imperial
College London, Institut de Ciencia de Materials de Barcelona, and CAMERA)

Overview
Detailed understanding of electronic properties

at the nanoscale is critical to developing new energy
materials at DOE facilities. �e electronic struc-
ture of an atomistic system can be determined from
the solution of a quantum many-body problem de-
scribed by the Schrödinger equation for the many-
body wavefunction. However �nding the exact so-
lution of Schrödinger’s equations is not computa-
tionally feasible except for systems with a handful
of atoms, due to the exponential increase in the
numbers of degrees of freedom with respect to the
number of atoms.

�e widely used Kohn-Sham density functional
theory alternatively reformulates the problem as
one involving non-interacting electrons moving in
an e�ective potential, which must be determined.
�e advantage is that the ground-state properties
of a many-electron system are now determined by
an electron density in R3, regardless of the num-
ber of electrons. �is is a signi�cant computational
advantage.

While KS-DFT makes computation of electronic
structure feasible for many quantum systems of
practical interest, it is still computationally demand-
ing, especially for nanoscale systems and beyond
(with a large number of electrons N ∼ 103 − 106).
�e challenge is to understand the mathematical
properties of these approaches in order to design
e�cient numerical algorithms. �e most widely
used algorithms are based on matrix diagonaliza-
tion, with computational costO(N3) (N is the num-
ber of atoms), which severely limits applicability to
large scale systems especially for metallic systems.

A New Approach
To overcome this problem, CAMERA scientists

Lin Lin and Chao Yang have developed the pole ex-
pansion and selected inversion (PEXSI) method as a
new, reliable, and e�cient method for accelerating
KS-DFT systems for large scale systems. �e key
idea is that, instead of �nding the eigenvalues and
eigenfunctions as originally required by DFT, the

PEXSI method instead evaluates the most impor-
tant physical quantities such as the electron density,
the energy, and the atomic force directly through
the computation of selected elements of a series of
inverses of shi�ed Hamiltonian matrices.

�e PEXSI method has been built into a versatile,
massively parallel so�ware package, and has now
been integrated into electronic structure so�ware
packages such as BigDFT, CP2K, DGDFT, FHI-aims,
�antumWise ATK, SIESTA, and is part of the “Elec-
tronic Structure Infrastructure” (ELSI) project to be
integrated into many more codes.
Mathematical Approach

�e Kohn-Sham density functional theory re-
quires the solution of the following nonlinear eigen-
value problem.

H[ρ]ψi(x) ≡(
−1

2
∆ +

∫
dx′

m(x′) + ρ(x′)
|x− x′| + Vxc[ρ]

)
ψi(x)

= εiψi(x).

Here the eigenvalues εi and the eigenfunctions ψi
depend on the electron density ρ, given by summing
up the eigenfunctions, namely

ρ(x) = 2

N/2∑
i=1

|ψi(x)|2
∫
dxψ∗i (x)ψj(x) = δij ,

ε1 ≤ ε2 ≤ ...

re�ecting the orthogonality of the eigenfunctions.
�e PEXSI approach avoids the evaluation of the

eigenvalues or eigenfunctions all together, and in-
stead directly evaluates the density matrix γ̂(x, x′),
whose diagonal elements give the electron density
as ρ(x) = γ̂(x, x). In this sense, the PEXSI approach
directly focuses on physical observables of interest.
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More speci�cally, the density matrix is expanded as

γ̂(x, x′) = Φ(x)Im

(
P∑
l=1

ωρl
H − (zl + µ)S

)
ΦT (x′)

≡ Φ(x)ΓPΦT (x′).

Here Φ(x) represents a basis set. Each term Gl =(
(zl + µ)S − H

)−1 is called a Green’s function.
PEXSI’s contributions are two-fold. First, PEXSI
provides an e�cient discretization scheme for eval-
uating the Cauchy contour integral for approximat-
ing the Fermi-Dirac operator (i.e. the density ma-
trix). �is technique gives by far the lowest cost
for expanding the Fermi-Dirac operator. Second,
PEXSI provides the selected inversion method ac-
curately and e�ciently computes selected elements
of a Green’s function for a Kohn-Sham system, and
signi�cantly reduces the computational complex-
ity from O(N3) to at most O(N2) without loss of
accuracy for generic systems, including the di�-
cult metallic systems. �e PEXSI method also o�ers
much higher scalability when exploiting high per-
formance computing than previous methods. CAM-
ERA scientists have developed a massively parallel
selected inversion method, as well as an e�cient
selected inversion method for heterogeneous com-
puter architectures.

One remaining di�culty in the PEXSI method,
and the Fermi operator expansion (FOE) method in
general, is the evaluation of chemical potential. To
overcome this problem, we recently developed an
e�cient and robust strategy for determining chemi-
cal potential based on rigorous numerical analysis.
�e method’s e�ciency stems from the fact that
it always requires one iteration per self-consistent
�eld iteration step. �e accuracy of the chemical po-
tential is automatically re�ned as the self-consistent
�eld iteration proceeds, and eventually becomes ac-
curate. �is signi�cantly increases the e�ciency as
well as the robustness of the PEXSI method.

�e PEXSI technique has been successfully used
to tackle challenging electronic structure problems
for systems of large sizes: the SIESTA-PEXSI method
was used to calculate electronic structure proper-
ties of a graphene nano�ake for more than 10, 000
atoms from �rst principles, far beyond previous ef-
forts. CAMERA scientists have used DGDFT-PEXSI
to study large scale phosphorene nano�akes, and
predicted the edge reconstruction of armchair edged

phospherene nanoribbons at room temperature.
SIESTA-PEXSI was used to predict new solar

cell material candidates based on large scale edge
modi�ed phospherene heterojunctions and a new
way was proposed to construct a heterojunction
from a single type of material derived from only
phosphorene.

Le�: Phosphorene nanoribbons. Right:
HOMO and LUMO energies of large PNF
monolayers in di�erent system sizes and edge
types computed from SIESTA-PEXSI.

�e PEXSI method has been benchmarked within
the ELSI framework, which is a multi-institutional
collaboration for pushing forward the frontier of nu-
merical methods to solve Kohn-Sham density func-
tional theory. Using a large scale graphene system
with 5000 atoms for example and tested in the com-
munity so�ware package FHI-aims, PEXSI has been
demonstrated to have lower asymptotic complexity
and is more scalable than previous methods.

Scaling of the repeated steps in ELPA, libOMM,
and PEXSI solvers with respect to (a) the num-
ber of basis functions and (b) the number of
MPI tasks.

Collaborators
PEXSI and its CAMERA developers (L. Lin and

C. Yang) are a key component of ELSI: a multi-
institutional e�ort to build a uni�ed so�ware in-
terface for Kohn-Sham electronic structure solvers.
ELSI aims to simplify the implementation and opti-
mal use of the di�erent strategies, by o�ering: (a) a
uni�ed so�ware framework designed for the elec-
tronic structure solvers in Kohn-Sham density func-
tional theory; (b) reasonable default parameters for
a chosen solver; (c) automatic conversion between
input and internal working matrix formats; and, in
the future, (d) recommendation of the optimal solver
depending on the speci�c problem.
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Faster, Brighter, Sharper X-ray Ptychography
(Joint Collaboration: Uppsala, Michigan, Chicago, Toronto, Duke, U Texas, Tianjin

Normal U., Peking U. with LANL, ALS, SSRL, LCLS, SLAC, and CAMERA)

Overview
To characterize structure and properties of new

materials, a new generation of microscopes are be-
ing pioneered, commissioned, and planned at sev-
eral DOE user facilities. �ese new facilities couple
together the brightest sources of tunable X-rays,
nanometer positioning, nanofocusing lenses, and
fast detectors.

�ese new microscopes utilize ptychography in-
vented 50 years ago to improve the resolution of
an electron microscope. Initially the process was
impractically slow, and prohibitively data and com-
putation intensive.

Today, faster detectors and several X-ray micro-
scopes at the brightest light sources can measure
a ptychographic dataset in a few seconds. �e re-
construction of millions of phases per second at
various microscopes and light sources is enabled
by an algorithmic framework and computer so�-
ware known as “SHARP” (Scalable Hetereogeneous
Adaptive Real-time Ptychography), developed in
collaboration between scientists from around the
world and members of CAMERA, and used in pro-
duction every day at the ALS, and is also used at
other US light sources.

Ptychographic experiment (Far-�eld): A stack of intensi-
ties fj = |F(ω ◦ Sju)|2 are collected. ω is the localized
coherent probe and u is the image of interest (or speci-
men). White dots on the image represent probe center
or scanning la�ice points with Dist denoting the slid-
ing distance between centers of two successive frames.
Frames are extracted out of the image by the linear op-
erator Sj , κ and κ̂ represent translational and angular
convolution kernels respectively. (H. Chang et al. Acta
Cryst. A (2018))

patterns were reconstructed with high reproducibility from
independent measurements. Fig. 2(g) shows the difference of
right and left circular polarized phase images collected at
780 eV, i.e., above the resonant energy, where both ampli-
tude and phase contrast are similar. As the XMCD contrast
changes its sign with opposite polarization, this difference
image isolates features with a component of magnetization
along the photon propagation direction.23,24 As expected for
perpendicular magnetic anisotropy, the observed features are
the domain labyrinth. The dark spots (¼“inclusions”) appa-
rent in the individual images in Figs. 2(a)–2(f) are mostly
absent in the difference phase image. In contrast, Fig. 2(h)
shows the sum of the same two phase images as in Fig. 2(g),
which mimics an image collected with linear polarization
where the signal is quadratic in magnetization and the mag-
netic contrast of the domain labyrinth should be small. The
magnetic domains are indeed barely visible, while the scat-
tering from the inclusions is enhanced. This suggests that the
inclusions are dominated by charge scattering, though they
may be ferromagnetic but with in-plane anisotropy which is
not visible in the experimental geometry used here; we will
return to this issue below. A powerful aspect of polarization-
dependent soft x-ray microscopy is this straightforward sepa-
ration of features associated with magnetic and charge
scattering.

The spatial resolution achieved with ptychography is not
determined purely by the numerical aperture of the detector
because it depends crucially on the measured signal at high
spatial frequency, which depends strongly on the sample’s

scattering contrast, as well as any systematic perturbations to
the data, i.e., sample positioning errors, drift, or unstable illu-
mination. This needs careful consideration specifically for
magnetic systems, where the charge-scattered signal is
significantly stronger than magnetic scattered signal,27 and
one might expect the corresponding resolutions to be differ-
ent. To estimate our structural and magnetic resolution inde-
pendently, we applied an FRC analysis28 separately to the
Fourier transforms of Figs. 2(g) and 2(h). The FRC measures
the spatial frequency dependence of the cross-correlation
of diffracted intensity from two independently measured
and reconstructed datasets. In our case, we reconstructed
“separate” images from a single ptychography scan using
even- and odd-numbered 2D scan positions. This approach
ensured perfect registry of the resulting images, but provided
a conservative estimate of the true resolution because only
half of the total available data were used in each image. The
resulting FRC results are shown in Fig. 3; the spatial fre-
quency where these curves cross a threshold is the estimated
resolution. A slight shift to lower frequency for magnetic rel-
ative to charge scattering does indeed suggest that our reso-
lution is slightly better for charge than magnetic features.
That the shift is small is probably related to the fact that scat-
tered intensity depends much more strongly on spatial fre-
quency than sample contrast.29 The reported numerical
resolution depends on the criterion applied to the FRC
curves; a threshold of 0.5 suggests charge and magnetic reso-
lution of 12 and 10 nm, respectively, while the half-bit
threshold places them both near 7 nm.

FIG. 2. Reconstructed amplitude (a)–(c) and phase (d)–(f) components of three x-ray energies of SmCo5 thin film sample in transmission geometry. (a) and (d)
are reconstructions at x-ray energy of 778 eV; (b) and (e) are reconstructions at x-ray energy of 778.6 eV; and (c) and (f) are reconstructions at x-ray energy of
780 eV. Red open circle and square (with red zoomed open square) indicate the inclusions present in the thin film sample. Note that in (d), the inclusions have
opposite contrast (white color), indicating that the phase contrast is reversed compared to phase contrast in (f). The gray-scale bar is in the range of "0.2 to
0.5 rad. The phase component of the refractive index changes sign when going through the absorption component maximum. (g) Difference of left and right
polarized reconstructed phase images at 780 eV x-ray energy taken at the position shown in (c) and (f). The gray-scale bar is in the range of "0.4 to 0.4 rad. (h)
Sum of left and right polarized reconstructed phase images at 780 eV x-ray energy. The gray-scale bar is in the range of 0 to 1.2 rad.

094103-3 Shi et al. Appl. Phys. Lett. 108, 094103 (2016)

Magnetic state mapping in thin SmCo5 �lms at
nanoscale resolution obtained using SHARP, collabora-
tion with University of Oregon, LBNL (ALS, CRD, MSD,
Engineering), UC Santa Cruz, Institute for Metallic Ma-
terials, Helmholtzstr. Dresden, (NSRRC) Taiwan, X. Shi,
et al. Appl. Phys. Le�. (2016).

Mathematical Challenges and Results
Ptychographic reconstruction is challenging be-

cause it involves solving a di�cult phase retrieval
problem, calibrating optical elements, and dealing
with experimental outliers and noise. For 3D nano-
tomography, sample dri�s occur at high resolution
and sample rotation may be limited.

To meet these challenges, CAMERA scientists
Huibin Chang, Pablo Enfedaque, and Stefano March-
esini exploited state-of-the-art mathematical as-
pects of phase retrieval, as well as the complexities
of “background noise” optimization and detector de-
noising speci�c to a variety of instrumentation. �is
has led to some notable successes in the analysis
of magnetic thin �lms, magnetozomes, and three-
dimensional ba�ery materials.
Faster Ptychography

Coherent ptychographic imaging experiments
o�en discard the majority of the �ux from a light
source to de�ne the coherence of an illumination.
Even when coherent �ux is su�cient, the stability
required during an exposure is another important
limiting factor. A new model developed by CAM-
ERA scientists, the Univ. of Texas, and Tianjin Uni-
versity can use more light than before, opening the
entrance slits of a ptychographic microscope, and
reducing the number of frames required to obtain
su�cient data to reconstruct a meaningful image.
Fast analysis is ensured by using a simple and e�-
cient model with only one coherent probe, and the
variance of a convolution kernel. �e illumination
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is described by the superposition of a single coher-
ent illumination convolved with a separable trans-
lational kernel, so that partially coherent e�ects in
ptychography are addressed by using a simple and
e�cient model with only one coherent probe, its
gradient and the variance of a convolution kernel.

�e starting point is the now standard blind pty-
chographic phase retrieval problem, namely:

Find ω ∈ Cm̄ and u ∈ Cn, s.t. |F(ω◦Sju)|2 = fj .

ω is a complex matrix describing the wavefront of
the illumination, u is a complex matrix describing
the image, S and F extract frames and perform a
DFT operation. Taylor expansion of ω yields:

fj(q) '
∫ ∣∣F (Sju (ω−ξT∇ω+1

2ξ
T∇2ωξ)

)∣∣2 κ(ξ)d2ξ

which can be simpli�ed as

f ' |F(ω ◦ Sju)|2 + σ2
1|F(∇1ω̃ ◦ Sju)|2

+σ2
2|F(∇2ω̃ ◦ Sju)|2,

where σ := (σ1, σ2) with variance adjusted probe

ω̃ := ω + 1
2(σ2

1∇11ω + σ2
2∇22ω + 2σ12∇12ω).

�e collaboration developed the Gradient De-
composition of the Probe (GDP), a model that ex-
ploits translational kernel separability, coupling the
variances of the kernel with the transverse coher-
ence, and developed an e�cient �rst-order split-
ting algorithm GDP-ADMM to solve the proposed
nonlinear optimization problem. Numerical experi-
ments demonstrate the e�ectiveness of the proposed
method with Gaussian and binary kernel functions
in �y-scan measurements.

Remarkably, GDP-ADMM using nano-probes
produces satisfactory results even when the ratio
between kernel width and beam size is more than
one, or when the distance between successive ac-
quisitions is twice as large as beam width: these
qualities reduce acquisition and exposure times.

CAMERA scientists are building a high perfor-
mance implementation of new advanced calibra-
tion algorithms for metrology, tomography, back-
ground removal, dictionary learning denoising, and
are working in collaboration with the Beamline Ex-
periment Analysis and Reconstruction project at
LANL and the LCLS, to bring beam characterization
of coherent light source experiments to LCLS.

Magnetic state mapping magnetozome bacteria at
nanoscale resolution obtained using SHARP, collabo-
ration with McMaster, Universidade Federal do Rio de
Janeiro, (NSRRC) Taiwan. X. Zhu, PNAS (2016).

3D chemical state mapping of a ba�ery material obtained
using SHARP. Voxel segmentation to de�ne individual
particles, and distribution of particles. Collaboration
with LBL, UI Chicago, Chungnam Nat. Univ., South Ko-
rea Chunjoong Kim, SLAC, Cambridge, Stony Brook,
Uppsala. From Y-S. Yu, Nat. Comm (2018).

6 of 13 Huibin Chang et al. ! Partially coherent ptychography Acta Cryst. (2018). A74

Figure 3
Reconstructed images by FC-ADMM in the first and third rows, and by GDP-ADMM in the second and fourth rows while varying r. Probe with its three
modes ~!!;r1 ~!!;r2 ~!! from left to right in the bottom row, which are recovered from the second row with r ¼ ð4; 4Þ.

Files: a/lk5027/lk5027.3d a/lk5027/lk5027.sgml LK5027 FA IU-1814/13(19)3 1813/56(19)3 (100) LK5027 PROOFS A:FA:2018:74:3:0:0–0
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X-ray Scattering for Reconstruction of Form-factors
in Line Etched Patterns

(Joint collaboration: NIST, APS, NSLS-II, ALS, and CAMERA)

Overview
Moore’s law has been a guiding principle for

the semiconductor industry and has helped to push
manufacturing to even smaller feature sizes. Pho-
tolithography, followed by chemical etching, is the
fundamental process of producing the required tran-
sistor sizes. With feature sizes now ranging down
to a few nanometers, new measuring techniques are
required to ensure quality control across manufac-
turing processes. Many traditional techniques, such
as scanning force microscopy, are reaching the reso-
lution limit or lack the required contrast. In the last
few years, X-ray sca�ering has started to emerge
as a possible contender to �ll the required metrol-
ogy gap, since it provides a fast and non-destructive
method to investigate nanostructures with poten-
tially high resolution and accuracy.

Fast algorithms and analyses are needed be able
to convert Fourier pa�erns captured on detectors
at a rate and accuracy that can handle emerging
X-ray sca�ering measurements. One of the most
successful techniques, Critical Dimension Small An-
gle X-ray Sca�ering (CD-SAXS), was developed at
NIST and recovers the morphology of gratings in
a transmission geometry. CAMERA, employing a
similar framework, has developed a technique to
use Grazing-Incidence geometry.

Critical Dimension GISAXS

(a) CD-SAXS in Transmission geometry and b) CD-
GISAXS in Grazing-Incidence geometry.

CAMERA scientists Guillaume Freychet, Dinesh
Kumar, and Alexander Hexemer have worked in
close collaboration with the NIST group to accel-
erate the CD-SAXS analysis code by porting the
code onto GPUs resulting in a code ten times faster.
CAMERA has also embedded CD-SAXS in Xi-CAM

for ease of access. CAMERA then extended the
method to work in re�ection geometry, thus elim-
inating the need for thin substrates and high en-
ergy X-rays. �e technical requirements for mea-
suring CD-GISAXS are quite minimal. GISAXS is
a technique for measuring the Fourier components
of surface morphologies. �e characteristics of line
pa�erns morphologies exhibit strong Fourier rods,
that are perpendicular to the surface and are equally
spaced. �e Fourier rods, also known as Bragg rods,
intersect with the momentum transfer vector of the
elastic X-ray sca�ering at a single point above the
horizon. �e Bragg rods can be scanned by rotat-
ing the moment transfer vector, and therefore the
sample. �e intensity of the recorded Bragg rods is
modulated by the of Fourier transform of the shape,
i.e. the form factor of the individual grating.

Mathematical Formulation and Algorithm
If we assume that the etched line gratings are

in�nitely long, the mathematical problem of resolv-
ing the shape of the gratings is reduced to a 2-D
cross-section:

I(q) ∝ ‖F (q)S(q)‖2

Focusing on the cross-section reduces the com-
plexity of the approach. However, the commonly
used approximation for X-ray transmission, Born
Approximation, is no longer valid in the GISAXS
regime, because of multiple sca�ering occurrences.
One must use the Distorted Wave Born Approxima-
tion (DWBA), to calculate the form-factor F ,

F(q) =

4∑
n=1

Cn(αf , αi; η, t)Fn(qx, qy,±kfz∓kiz; `)

where Cs are the Fresnel coe�cients for a given
medium with complex refractive index η and thick-
ness t. F s are the Fourier transforms of a shape
with dimensions `. If the medium is air (or vacuum),
i.e. η = 0, the calculation of Fresnel coe�cients is
simpli�ed to:
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C = [1, r(αi), r(αf ), r(αi)r(αf )]T

r =
kz − k̃z
kz + k̃z

k̃z = −
√
η2
sk

2
0 − |k‖|2

where ηs is complex refractive index of the substrate,
and the Fourier transform of the trapezoid is given
by

F (qy, qz) =
1

qy

[
−mejh

qyL

2

(
1− e−jh

qy+mqz
m

)
+me−jh

qyL

2

(
1− e−jh

qy+mqz
m

)]
Here, m is the tangent of the side-wall angle. A
complex shape can be approximated by stacking
multiple trapezoids. In order to reduce the number
of parameters, all the trapezoids are restricted to be
of same height.

Exploiting High-Performance GPUs
�e minimization problem is inherently non-

convex, making it di�cult to use gradient-based
methods. A genetic algorithm is used to search for
the optimal parameters. Such global optimization
methods can be very expensive as one need to eval-
uate objective function multiple times. CAMERA
has implemented a GPU version of the required
form factor calculation in pure CUDA and archived
a 10x speedup on a single graphics card. CAMERA
is planning to expand the code to a multi-GPU ver-
sion to be able to match coming measurement times
and provide full automated real-time feedback for
CD-GISAXS.

Experimental Results
�e GISAXS experiment is performed while the

stage is spinning, in the sample-plane. �e �gure be-
low shows analysis of data obtained at the beamline
8-ID-E at the Advanced Photon Source.

CD-GISAXS images recording with a rotation of the grat-
ings and the corresponding pro�les obtained from a ver-
tical 1D cut with the simulation and the line pro�le ex-
tracted CD-GISAXS and CD-SAXS

Summary
CAMERA has developed an algorithm that

solves full DWBA to �t complex shapes. Previous at-
tempts to solve this problem have either used SAXS
to avoid DWBA or have ��ed simpler shapes. �e
experimental setup results in sca�ering pa�erns
that eliminates the need to solve for full 2-D images.
All that is required is to simulate 1-D sca�ering
pro�les along the Bragg rods. �e experimental
setup allows 1D simulations along the Bragg rodes,
instead of expensive 2D simulations. Additionally,
if the incoming angle does not change during the
experiment, there is no need to calculate Fresnel
coe�cients and q-values for every minimization
iteration. �is reduces the cost of solving DWBA.

Collaborators
�is work was done in collaboration with J.

Kline, D. Sunday and D. Delongchamp from NIST.
Experiments were performed in collaboration with
J. Strzalka from APS at the Argonne National Lab, M.
Fukuto from NSLS-II, at the Brookhaven National
Lab and E. Schaible at the Advanced Light Source.

Initial experiments performed on line gratings
were provided by the Center of X-Ray Optics (P.
Naulleau), INTEL, and Imec, and future develop-
ments and experiments are being planned. IBM and
Applied Materials have expressed interest in future
collaborations,
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Algorithms and Tools for Accelerating
Nanoporous Materials Discovery

(Joint collaboration: Molecular Foundry, EFRC for Gas Separations Relevant to Clean
Energy Technologies, Nanoporous Materials Genome Center, Hydrogen Materials

Advanced Research Consortium, and CAMERA)

Overview
�e last decade has seen a surge of interest in the

synthesis, characterization and understanding of the
structure and design principles of advanced porous
materials such as metal-organic frameworks (MOFs),
covalent organic frameworks (COFs), porous poly-
meric networks (PPNs), and porous organic cages
(POCs). �ese materials hold promise for appli-
cation in many energy-related technologies, most
prominently in separations (e.g., separating carbon
dioxide from other gases in power plant exhaust),
gas storage (e.g., methane and hydrogen storage in
vehicular applications), and catalysis.

�e huge space of possible organic and inor-
ganic building blocks of these materials, along with
the simple, tinkertoy-like assembly principles, gives
rise to a vast combinatorial space of possible mate-
rials. CAMERA teams of applied mathematicians
and chemists, led by Maciek Haranczyk, have built
algorithms to describe and e�ciently explore this
complex space. �is has led to: a) methods to build
3D models of materials; b) pore structure charac-
terization and comparison; c) advanced pore de-
sign and discovery via optimization algorithms and
machine learning, respectively; and (d) automatic,
high-throughput characterization methods.

A New Approach
A material structure is de�ned by positions

of atoms. Hence, calculating geometrical param-
eters describing the void space in terms of its
size, shape, and connectivity requires introducing
a representation of its void space. Tessellation
techniques, where three-dimensional cells are con-
structed around atoms so that the boundaries of
cells serve as a representation of the voids in the
structures, are well suited for this task.

In the Voronoi tessellation, the space surround-
ing atoms is divided into irregular polyhedral cells
such that the cell for a given atom comprises the
space that is closer to that atom than any other. �is
Voronoi tessellation is appropriate for the case when

all atoms have the same atomic radius, and is not
suitable for a realistic model where the atoms have
radii that are unequal.

One approach is to invoke curved, hyperboloidal
faces as boundaries, which is an expensive approach.
To avoid this prohibitive cost, CAMERA researchers
capitalized on an approximation in which large
atoms are replaced by clusters of smaller particles
with radii equal to the radius of the smallest atom
present in the system. �is then reduces to a stan-
dard Voronoi tessellation, and the increased quan-
tity of equal-sized particles provide additional de-
grees of freedom to be�er approximate the idealized
curved-boundary Voronoi cell network.

Voronoi tessellation around four particles: (le�) tes-
sellation with curved boundaries around atoms of
unequal radii; (right) tessellation a�er replacing the
largest atoms with smaller atoms.

�is approach, together with e�cient implementa-
tions of Voronoi tessellation in CAMERA’s Voro++
library, provides a framework for specialized algo-
rithms to �nd parameters describing the void space,
its geometry and topology, within the material.

For example, voids inaccessible to a given molec-
ular probe can be identi�ed. �is information can be
used to calculate accessible surface area, accessible
volume, pore size distributions, and other descrip-
tors that can be utilized in building complex material
discovery approaches. All algorithms have been im-
plemented in the Zeo++ so�ware suite, which o�ers
sub-0.1 angstrom resolution and throughput allow-
ing characterization of millions of structures within
hours on a workstation.
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Results:
Some examples of successful use of CAMERA

screening and discovery tools include:
• Zeo++ screening of databases of approxi-

mately 500k experimental and predicted materials
structures of zeolite, MOF, COF, ZIF, and other fam-
ilies to identify optimal porous materials, and per-
formance limits for each family, in applications in
methane storage, hexane separations, and carbon
capture.
•New structure descriptors, which were used in

a machine learning-based approach to discover op-
timal materials for xenon/krypton separations, for
example, at the conditions relevant to nuclear fuel
reprocessing technology. One of the top perform-
ing structures, SBMOF-1, was later synthesized and
characterized at PNNL to con�rm that it is indeed
an outstanding material.
• Application of Zeo++ in analysis of dynamic

porosity in porous organic cage materials, which
helps interpret experimental observations.
• Development of optimization-based design

approach for porous materials, showing targeted
materials with speci�c properties such as methane
uptake and internal surface area (gravimetric and
volumetric).

CAMERA developed Zeo++ has provided unique
functionalities and enabling technologies, which con-
tributed to the success of a number of DOE-funded
research centers. Figure: Six journal covers high-
lighting contributions enabled by Zeo++.

Tools under development
�ere is growing interest in porous molecu-

lar materials, which include crystalline materials,
porous molecular alloys, and porous molecular liq-
uids. Analysis of their porosity is more challeng-
ing as compared to 3D framework materials such
as MOFs or COFs. For porous molecular materi-
als, there is interest in determining the character-
istics of each molecule comprising the material as
well as the ability to track the dynamic changes of
�exible structures. CAMERA’s current focus is on
developing new tools aimed speci�cally at molec-
ular porous materials, built in hybrid approaches
that combine Voronoi tessellations with alpha-shape
analysis. �ese tools will provide basic characteris-
tics for any molecule that form porous material, e.g.
for a given molecule, calculate its internal and ex-
ternal surface area, internal volume, shape and size
of openings leading to its molecular internal cavity,
and qualitative measure the non-convex character
of the molecule. �e challenge is to identify the
boundary of the internal void of the molecule that
would agree with an intuitive de�nition used by
chemists.

Collaborators
�e algorithms implemented in Zeo++ have

been utilized thus far by approximately 1000 re-
searchers from both academia and industry, and
is an important tool at a number of DOE-funded
research centers, including

• �e DOE Basic Energy Sciences-funded
“Nanoporous Materials Genome Center.”

• �e Energy Frontier Research Center for gas
separations for clean energy technologies.

• �e DOE Fuel Cell Technologies O�ce’s “Hy-
drogen Materials-Advanced Research Consor-
tium.”

�ese collaborations have resulted in methods to
predict novel crystal structures as well as enumerate,
characterize and screen porous material databases,
design of novel materials with properties tailored
to speci�c applications, and exploit optimization-
based porous materials design.
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Recognizing Structure from Image Data:
Enhancement, Extraction, and Identi�cation

(Joint collaboration: ALS, GE, BIDS, and CAMERA)

Overview

Given reconstructed images produced from scan-
ning experiments, a major task is to detect and
extract characteristics of imaged structures. �is
is typically done through painstaking manual seg-
mentation: a costly and time-consuming procedure
which cannot handle high-throughput experiment.

CAMERA researchers, in collaboration with the
ALS, NCEM, and BIDS, have built automatic algo-
rithms to quickly extract and analyze image data.
�ese algorithmic tools, which include classical
image processing, geometric priors, and template
matching, and generalized physics-speci�c machine
learning, are in use across a �eld of applications.

A. Analyzing micro-CT images
A major task in processing microtomography

(micro-CT) is to detect and quantify properties of
imaged solids, as a step toward assessing the quality
of materials and measuring microstructures. Chal-
lenges include dealing with corrupted scans, recon-
struction artifacts, and multiphase volumes. Much
of this metrology requires tools that o�er both �ex-
ibility of use, a variety of algorithms, and e�cient
implementations fo allow for fast iterations and sca-
bility to data streams.

To address materials metrology through mi-
croCT experiments, CAMERA scientists have built
tools to automatically extract structure. In the
context of analyzing ceramic material composites
(CMC) for micro-structure damage, these automatic
tools can process large numbers of images to assess:

• Number of components and detected defects.
• Deformation and failure under tension.
• Damage in ceramic matrix composites.

Outline of technical approach
�ree main steps in analyzing micro-CT recon-

structed images are:

• Enhancement of image quality by designing
scalable 3D �ltering algorithms based on anisotropic
di�usion and mathematical morphology to empha-
size contrast and edge maps. �ese algorithms han-

dle both data streaming and can load from out-of-
core sources, and the resulting so�ware tool enables
large datasets to be processed in parallel, removing
RAM-based constraints.

• Separation of the dense material from the
background involves volume partitioning into solid
phase and interstitial regions, using graph-based
models based on an adaptive statistical merging
predicate on intensity levels and voxel vicinity that
runs in linear-time. �ese methods are combined
with non-supervised algorithms (fast clustering ap-
proaches such as k-means and histogram-based
thresholding) and supervised algorithms (including
random forest, neural networks, and convolutional
neural networks).

• Extraction of target microstructure, using pri-
ors and geometric constraints to reduce the size of
the search space with regard to the pa�ern to be de-
tected. For example, when analyzing ceramic matrix
composites, to identify �bers, we model �ber cross-
sections as an ellipse and de�ne the �ber detection
as a search problem. Since similarity of the �ber
cross-section is consistent, a variant of template
matching is used to search for �bers, and depends
on two main steps: �rst, to de�ne similarity metrics
between prototypes and local regions, and second,
to determine the best matches.

�ese algorithms are used at ALS beamlines to ex-
tract micro-�ber data, and have been coupled to a
virtual reality environment to allow 3D navigation.
�ey reduce the time to analyze a material from
days with manual segmentation to a few minutes.
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DOE Secretary Perry using 3D virtual imagery of
ALS-imaged and CAMERA-reconstructed �ber data

B. PyCBIR: Content Based Image Retrieval
CAMERA researchers have built a new visual

search engine (pyCBIR) for scienti�c image retrieval
based on pictorial similarity. �is tool is capable of
retrieving relevant images using datasets across sci-
ence domains. CAMERA’s package has been used to
�nd closest matches of sca�ering data to a trained
library of stored images.

PyCBIR provides real-time image retrieval using
a compact data representation which leverages his-
torical data tagged by domain experts, and provides
an associated con�dence metric for each image. It
exploits convolution neural network-based tools
for pa�ern pa�ern recognition using optimized li-
braries, such TensorFlow, cuDNN, and cuFFT.

Results
As an example, pyCBIR was used to search and

rank materials imaged using X-ray di�raction. Scat-
tering pa�erns were generated taking input struc-
tures and running CAMERA’s HipGISAXS forward
simulator to produce the output sca�ering pa�erns.

�en, a network was trained with simulated im-
ages of X-ray di�raction designed to match regions
and pa�erns of appropriate crystal structures.

PyCBIR �ow chart for sca�ering image recognition

pyCBIR output. Le� column: �eries.
Right columns: Closest matches.

In a di�erent application, pyCBIR was used to
�nd closest texture matches from samples against a
large public database.

pyCBIR Output. Le� column: �eries.
Right Columns: Closest matches.
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CAM-Link: Real-Time Streaming and Work�ows
(Joint collaboration: SSRL, ALS, and CAMERA)

Overview
Imagine trying to “get the most” from data com-

ing out of a beamline. At one extreme, this might
involve real-time streaming that processes data as it
is being collected and then provide instant feedback
and “on-the-�y” experimental steering. At the other
extreme, one might post-process terabytes of data.

It is tempting to write customized so�ware for
a given set of experimental requirements. However,
many beamlines share a mix of work�ow and algo-
rithms for data analysis.

What is needed is a scalable solution that, for a
given experimental requirements, connects together
the best combination of detectors, experimental con-
trols, algorithms, and compute resources, from local
dedicated resources to supercomputing facilities.

To address this range of needs, a CAMERA
project built a distributed generator that enables
execution of customized work�ows algorithms to-
gether into an end to end processing pipeline which

• Executes tasks and moves data across dis-
tributed environments. (from beamline to lo-
cal environment to remote execution.);

• Enables client-server work�ow, from execut-
ing static graphs to dynamic tasks.

• Enables streaming, in-situ work�ow.

�is work�ow environment is available indepen-
dently, and is also built into Xi-CAM. It has been
used to execute GiSAXS code at supercomputing
facilities and execute remote tomography pipelines.
�e infrastructure seamlessly moves data and access
remote computing while providing a comprehensive
visual interface.

Case Study: Ptychography
A good example is provided by CAMERA’s

Nanosurveyor streaming work�ow environment for
ptychography at the ALS. It links and drives e�cient
algorithms and work�ow to run the experiment, ex-
ecutes framegrabbers and camera control, performs
data pre-processing, and uses CAMERA’s SHARP
ptychography algorithm executing on a local GPU
cluster for on-the-�y image reconstruction.

Ptychography steps
�e �gure below shows the data work�ow: �ow

from the framegrabber to the SHARP reconstruction
algorithm and GUI display is shown at bo�om.

Nanosurveyor: Data Work�ow

Real-time ptychography

CAMERA’s CAM-Link: Flexible Work�ows
At the core is CAMERA’s “CAM-Link”, which is

an underlying low level library to launch tasks and
move data between remote machines and propagate
results back to the host (which is either executed by
Xi-CAM or some other environment).
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�e CAM-Link library, launched either stand-
alone or within Xi-CAM, enables developers to de-
scribe the ecosystem required for executing tasks
that best matches the desired criteria, such as quick-
est response, best performance, or least data move-
ment. CAM-Link’s setup performs four steps:

CAM-Link and Nanosurveyor

• Identify and setup resources: Connect to
each remote resource: launch event loops that
perform proper connection and coordination;

• Launch services: Start tasks within each re-
sources and ensure proper setup;

• Connect network: Pass relevant infor-
mation between each task, such as level
of parallelism, communication ports, etc.;

• Execute graph: �e entire graph is executed
to ensure no data is lost during analysis po-
tentially due to any race conditions.

For example, the ptychography streaming anal-
ysis pipeline launches 6 tasks over 3 machines. �e
user’s machine serves as the master control and vi-
sualizes results, while the data acquisition machine
samples the frames from the CCD and performs
clean up while saving raw frames to disk, and the
compute cluster performs parallel ptychographic
reconstruction using SHARP and forwards the re-
constructed image to the user’s desktop.

Second, the Xi-CAM Work�ow API enables con-
struction of graphs that describes execution of an
end-to-end analysis pipeline. �e API supports con-
nections between task inputs and outputs as well
as methods to subscribe to changes in state. �ese
two ways of describing connections between tasks
supports both real time updates within a task as
well as dependency based execution across tasks.

CAM-Link/Xi-CAM supports client-server
work�ows and converts internal plugins into static
graphs, dynamic graphs, and graphs that provide
real-time updates. Using the Dask backend sched-
uler paired with the Cam-Link library enables Xi-
CAM to launch tasks locally or remotely. �is
transparent movement of the analysis pipeline en-
ables computation wherever the data is located by
simply providing credentials to any given remote
machine.
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Xi-CAM: A Community-Driven Platform for
Multimodal Analysis in Synchrotron Science
(Joint Collaboration: SSRL, NSLS-II, APS, NIST, ALS, and CAMERA)

Overview
Synchrotron scientists and users require new

so�ware tools for growing needs as data volume
and complexity of analysis/experiment increases.
Faster detectors and streamlined automation require
a sustainable path towards managing this data.

In a cooperation across lightsources, CAMERA
scientists Ron Pandol�, Hari Krishnan, Dinesh Ku-
mar and Alex Hexemer have developed a versatile
interface “Xi-CAM” for visualization, data analy-
sis, work�ow for local and remote computing, data
management, and seamless integration of plugins.

Xi-CAM screenshot

A Community Resource Across Facilities
Xi-CAM is pure Python, BSD open-source, and

community integrated, with growing contributions
from across the synchrotron community:

Uni�ed GUI:
Xi-CAM has a uni�ed GUI to access many exter-

nal technique-speci�c algorithm libraries, including
• APS: TomoPy: Xi-CAM has incorporated APS’s

TomoPy so�ware for tomography reconstruction.
• Antwerp: Astra: Xi-CAM has incorporated As-

tra’s tomography so�ware.
• ALS: TomoCAM: Xi-CAM has incorporated

CAMERA’s tomography so�ware.
• ESRF: pyFAI: Xi-CAM incorporates ESRF’s pf-

FAI for high-throughput SAXS analysis.
• ALS: HipGISAXS and HipRMC: Xi-CAM uses

ALS’s packages for GISAXS/SAXS simulations.
• UCHI: Larch: Xi-CAM uses Larch for NEXAFS

corrections and analysis, including Kramers-Kronig
complex refractive index estimations.

• ALS: MSM: Xi-CAM includes CAMERA’s MSM
for materials analysis.
• NIST/CAMERA: CD-SAXS and CD-GISAXS: Xi-

CAM includes the joint NIST/CAMERA packages
for CD-SAXS and CD-GISAXS.
• SSRL: HiTp: Xi-CAM includes SSRL’s high

throughput GIWAXS algorithms for combinatorial
analyses.
• NSLS-II: Scikit-Beam: Xi-CAM uses the scikit-

beam library for XPCS data analysis algorithms.
• NIST: SASVIEW Xi-CAM uses many form fac-

tor models in the SASVIEW-models library for �t-
ting 1D spectra
• APS: GIXSGUI: Xi-CAM has a Python port of

this package’s GISAXS crystal structure simulator.
• DESY: DPDAK: Xi-CAM can call this library’s

geometric re�nement algorithm for calibration.

Data Handling:
• NSLS-II: DataBroker: Xi-CAM data manage-

ment is mediated through NSLS-II’s DataBroker.
• ESRF: FabIO: Xi-CAM’s data formats are ab-

stracted from ESRF’s FabIO sca�ering data formats.
• APS: DataExchange: Xi-CAM uses this abstrac-

tion library to unify loading of tomographic data.

Abstracted Controls Interface:
• LCLS-II: PyDM: Xi-CAM’s rapid controls inter-

face design uses this GUI widget library.
• NSLS-II: Bluesky and Ophyd: Xi-CAM’s uses

NSLS’s Bluesky/Ophyd to provide controls interface
across LCLS-II, NSLS-II, ALS and APS beamlines.

Remote Processing:
•ALS: CAM-link: Xi-CAM integrates with ALS’s

CAM-link’s rapid compute resource deployment
system for high throuput processing.
• Anaconda: DASK: Xi-CAM uses Anaconda’s

Distributed package for scalable remote execution.
• SSRL: PAWS: Xi-CAM incorporates SSRL’s

PAWS for remote processing of custom work�ows.
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Design Principles
Xi-CAM is not limited to a speci�c technique,

facility/instrument, data format, or OS operating
system. �e intent is to provide a so�ware stack for
multiple instruments in multiple environments. �e
plugin-based approach supports extensibility, allow-
ing new techniques to be added to Xi-CAM. Multiple
data formats and hardware pro�les are supported,
and can easily be extended to cover new devices.

By making a variety of techniques available in a
single platform, cross-plugin communication can di-
rect multi-modal analysis. Xi-CAM exposes libraries
to researchers without requiring programming ex-
perience or deep technical knowledge. Xi-CAM
developers collaborate with the authors of these
libraries and contribute back to external packages.

Xi-CAM Features
Current features and functionality include:
• Automated calibration: With minimal user di-

rection, the complete experimental geometry can
be ��ed to ensure correct translation of the real
space image to Q-space. Multiple options are avail-
able for calibrant materials. Automated techniques
include Fourier auto-correlation, circular wavelets,
and DPDAK’s re�nement algorithm. An interactive
alignment interface is also available for tomography.

• Data formats: A wide variety of data formats
is available including community standard formats
(NeXUS, dxchange), legacy formats (TIF, �ts, etc.),

device-speci�c formats (EDF etc.) and more.

• Fast azimuthal integration: Xi-CAM uses
the community package pyFAI (ESRF) for high-
throughput SAXS data analysis with optional opti-
mizations for GPUs.

• GIWAXS remeshing: A special geometric cor-
rection necessary for GIWAXS experiments is in-
cluded, properly correcting for projection of the
Ewald sphere, and resulting inaccessible Q-space.

• Timeline mode: Xi-CAM provides unique tools
to interactively analyze series data. With timeline
mode, users scroll through time-series data and
quickly identify key structural changes, or compare
properties across a parameter space.

• Data in�ll: SAXS o�en has missing data result-
ing from masked or inactive regions on a detector.
Multiple approaches are provided to �ll in missing
data to clean up artifacts.

• Visual parameter optimization: When explor-
ing e�ects of parameters in processing algorithms,
Xi-CAM allows users to select a range of values, and
then scroll through results and select the ideal value
for use in analysis or reconstruction.

• IPython console: All internal variables of Xi-
CAM are exposed in an embedded Python console.
Custom processing can easily be applied to loaded
data with some programming experience.

Current Installations

At APS 2-BM (micro-CT) At APS 8-ID-E (Sca�ering) At BNL 11-BM (Sca�ering)
Xi-CAM is currently installed at:

APS: Two beamlines: 2-BM, 8-ID-E
BNL: �ree beamlines: 11-BM, 6-BM, 12-ID
SSRL: Two beamlines: 2-1, 1-5
ALS: Five: 7.3.3, 5.3.1, 11.0.1.2, 6.3.1.2, 8.3.2i

Other research facilities: NIST: One beamline:
Universities: Fribourg, Berkeley, Colorado, Kent

State, TU Munich, Bayreuth, Stanford,
UCSF, Tu�s, TU Denmark, Penn State,
UC Davis

Industry: DOW, Rivera, GE.
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CAMERAWorkshop: Bringing the
Synchrotron Tomography Community Together

(Joint Collaboration: ALS/LBNL, LLNL, SSRL, APS/ANL, NSLS-II/BNL, ORNL, NIST,
LANL, KIT, MAX IV, ANKA, SLS, Petra III, Australian Synchrotron, Diamond,

NCEM/LBNL, ALCF/ANL, CWI, and CAMERA)

Overview
In November 2016 and 2017, a CAMERA-

sponsored workshop was held at LBNL with a fo-
cus on current state-of-the-art tomographic recon-
struction algorithms. �e goal of the workshop was
to bring together users, practitioners, and devel-
opers to assess the current landscape of available
algorithms, to investigate commonalities and di�er-
ences among the various techniques, and to discuss
a range of topics, from required theoretical and al-
gorithmic advancements on through to practical
issues of implementation and deployment. Partici-
pants included beamline scientists, developers and
users. Talks included:

• Developers describing their current algo-
rithms, capabilities, and potential.

• Users discussing successes and unmet needs,
and trying to �nd common goals.

• Beamline scientists presenting recent and fu-
ture instrumentation developments.

�ree working groups emerged: “Performance
Benchmarking”, “Image �ality” and “Web Portal
and Sharing”, chaired by Singanallur Venkatakrish-
nan (Oak Ridge National Laboratory), Doga Gur-
soy (Argonne National Laboratory), and Daniël Pelt
(CWI Amsterdam), respectively.

A key component of both workshops was the
demonstration sessions.

• In advance of the meeting, nine di�erent so�-
ware packages were sent to CAMERA. �ese
packages included: TomoPy, the ASTRA Tool-
box, UFO, Savu, PyHST2, TXM-Wizard, Liver-
more Tomography Toolbox (LTT), Xi-CAM,
and TomoCam.

• �e packages were all installed on LBNL ma-
chines, with a log kept of challenges involved
in installing working versions.

• Machines were made available to run these
packages during the workshop, including
workstations, GPU clusters, and supercom-
puting facilities at NERSC.

Participants in the Nov 2016 Meeting

Ample time was included to demonstrate each
package and to discuss various strengths. One of the
highlights of the meeting was CAMERA’s Dinesh
Kumar’s closing talk of the �rst meeting:

What I learned installing 10 di�erent tomography
packages in less than 10 days

Participants all commented that watching someone
else go through the process of deploying their demos
was one of the most valuable parts of the workshop:
it revealed aspects of their so�ware that users ex-
perience in actuality, but never come up during a
rehearsed standard presentation. �e shared experi-
ence led to conversations and interactions produced
ideas for improvement. A user who wished to re-
main anonymous commented:

It was nice to �nally meet the architects of some of
the packages I have been using. Now that I have met

them, I can no longer send nasty e-mails.

Shared Observations

• �e explosion in data: Due to the high �ux
of light and neutron sources, the size and
speed of new detectors, the increasing level
of automation, and the increasing bandwidth
of networking infrastructure, we are increas-
ingly seeing very high data rates and volumes
at DOE tomography beamlines.
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– Fast feedback is needed to con�rm that
an experiment is working, and that the
data will yield the information needed.

– Data analysis and acquisition protocols
need to be improved so that experimen-
tal errors can be detected as soon as pos-
sible, desirably in real-time, to maximize
utilization and productivity.

• Algorithms: It is hard for beamlines to take ad-
vantage of published algorithms. Algorithm
developers should package their new work
within the tools, so�ware, or frameworks al-
ready in use at the beamlines to make it easy
for beamline users to try new techniques. Pre-
processing is a key part of reconstruction, and
these methods should also be shared. Adop-
tion of new algorithms will also be encour-
aged when developers benchmark so�ware
using shared data sets and then share informa-
tion about their work on the portal. However,
there is an intrinsic challenge:

– Developers want to optimize a partic-
ular component: benchmarks that in-
clude the entire chain are not useful.

– However, from the user perspective,
what ma�ers is overall performance.

Critical Needs
•�e need for performance benchmarks and met-

rics: �e explosion in data rates leads to a major
push to increase speed and performance of tomog-
raphy code. Beamline scientists want to make de-
cisions about which so�ware will have the highest
performance. However, it is di�cult to compare
timing benchmarks between so�ware, because to-
mographic reconstruction is just one step in a data
chain that must include data management and a
processing work�ow to manage the required com-
puting steps, from input/output, to preprocessing,
postprocessing, visualization, and output.
•�e need for image quality benchmarks and met-

rics: �ere are no common approaches nor common
language to talk about image quality, or to be able
to compare di�erent approaches beyond visually
inspecting them and saying, “that one looks be�er.”
For the community to make more rapid progress to-
wards improving the image quality of tomographic
reconstruction, and then to automate those improve-
ments, it is critical that we develop appropriate im-
age metrics and the ability to benchmark image

quality in di�erent ways.

Results: Paths forward
Several paths forward were laid out and are now

being pursued:
• To improve the process of collaboration and

sharing, workshop participants agreed to contribute
to a shared web portal focused on the process of
tomographic reconstruction, “TomoPedia” https:
//tomopedia.github.io/, which com-
plements “TomoBank” http://tomobank.
readthedocs.io/, a public repository of to-
mography raw data, and in particular data sets
representing those that give particular challenges
to tomographic reconstruction codes.
•Several tomography packages commi�ed to be-

ing incorporated into Xi-CAM: the CAMERA GUI-
Python so�ware environment. Plans to incorpo-
rate LTT (the Livermore Tomography Tools) into
Xi-CAM are underway.

Participants in the Nov 2017 Meeting

Comments
“Great concept, a long-needed push to promote syner-
gies that have been itching to coalesce, and �ll knowl-
edge gaps that stymie many researchers. Particularly
useful to bolster/bootstrap the young investigators we
really need in this �eld.” B. Ward, LANL
“It has been great for me to see some of the so�ware
packages that are available and their features and
strengths. I hope this becomes a re-occurring work-
shop to keep everyone talking and collaborating.” A.
Kiss, SLAC.
“�ere are many meetings on tomographic algorithms
every year, but I have never a�ended a meeting dedi-
cated to tomographic so�ware. It was good to bring
all of these groups together; this will improve the col-
laborative environment.” K. Champley, LLNL.
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Training the Next Generation: CAMERA Schools

Overview

Part of CAMERA’s mission is to train the next
generation of young scientists to tackle problems
at DOE synchrotron light sources and nano-science
centers. What is required are skills at the intersec-
tion of applied mathematics, computational science,
so�ware engineering, sca�ering physics, materials
science, and experimental measurement. People sel-
dom come with experience in all of these �elds and
it is important that they gain common understand-
ings across these disciplines. To meet these needs,
CAMERA has sponsored a set of summer schools
and conferences to bring communities together to
work on common problems.

2016 GISAS Summer School at TU Munich

CAMERA co-sponsored a summer school on the
interplay between experiments and theory in graz-
ing incidence sca�ering (GISAS), remote work�ows,
and high performance computing. �e GISAS sum-
mer school was designed to kick-start beginners and
introduce new data analysis tools for students with
sca�ering experience.

�e summer school invited Masters and PhD
students to join with their own thin �lm samples
suitable for grazing incidence small angle X-ray scat-
tering (GISAXS) and grazing incidence small angle
neutron sca�ering (GISANS) measurements. �e
program consisted of lectures on experiment design
and sca�ering theory, necessary to understand the
method and to choose experimental parameters.

CAMERA designed a true “superfacility” for use
by students in the summer school:

• During the workshop X-ray experiments were
carried out remotely at the ALS using a
remote-controlled robot.

• Data was streamed from ALS into CAMER-
A�s Xi-CAM and reduced for processing.

• Students then used the Xi-CAM interface
to design work�ow (using Dask) to execute
HIPGISAXS in GPU acceleration mode in real-
time at the Swiss CSCC supercomputer center
200 miles away.

• Visualization was performed using CAMER-
A�s Xi-CAM interface.

�e supercomputing facility at CSCS performed a
full synchrotron dataset simulation in about 100
seconds, rather than several hours. �is allowed
students to fully analyze their datasets in just one
week, rather than the typical 3 to 6 months.

“Future developments of the CAMERA potentials are
followed with great interest and expectations, as it
is likely to become a comprehensive supercomputing
framework for the synchrotron community. A novel
collaboration with CAMERA is in fact now under con-
sideration at the SSRF, Chinese Academy of Sciences,
where we are developing a very large scale uni�ed
infrastructure for Synchrotron Big Data.”. Alessandro
Sepe, Head of the Big Data Science, SSRF, Chinese
Academy of Sciences, Shanghai, China.
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2016 Summer School on Electronic Structure

CAMERA co-sponsored, jointly with MSRI, a
2016 summer school on electronic structure.

Ab initio or �rst principle electronic structure
theories, particularly represented by Kohn-Sham
density functional theory (KS-DFT), have been de-
veloped into workhorse tools with a wide range of
scienti�c applications in chemistry, physics, mate-
rials science, and biology, etc. What is needed are
new techniques that greatly extend the applicability
and versatility of these approaches.

Many of the challenges that need to be addressed
are essentially mathematical. �e purpose of the
workshop was to provide graduate students a self-
contained introduction to electronic structure the-
ory, with particular emphasis on frontier topics in
aspects of applied analysis and numerical methods.

�e two-week lectures co-taught by CAMERA’s
Lin Lin and by Duke’s Jianfeng Lu gave a mathemat-
ical introduction to the �eld of electronic structure
theory, in particular the density functional theory.
�e lectures covered spin-1/2 particle, Schrödinger
equations for spin systems and in the real space,
hydrogen atom and identical particles, many-body
Hamiltonian, Hartree-Fock theory, Kohn-Sham den-
sity functional theory, self-consistent �eld itera-
tion, density matrix and Green’s function, den-
sity matrix algorithms, crystal and k-point sam-
pling, localization of Green’s function, perturba-
tion theory and density functional perturbation the-
ory, time-dependent density functional theory, time-
dependent perturbation theory, and RPA correlation
energy.

�e �rst week lecture started from the basic
quantum mechanics, and provided a self-contained
introduction to the density functional theory for
many-electron quantum systems. �e second week
lecture focused on two aspects of mathematical

study of electronic structure theory: (1) Analysis
and algorithms based on the density matrix formu-
lation of DFT and (2) Linear response theory on
time-independent and time-dependent systems.

Four one hour talks gave brief introductions to
electronic structure theory in chemistry and mate-
rials science and other related topics:

• “Large scale quantum mechanical simulations
of nanosystems”: Lin-Wang Wang (Materials
Science Division, LBNL)

• “Numerical methods for solving the Kohn-
Sham problem”: CAMERA’s Chao Yang (Com-
putational Research Division, LBNL)

• “NWChem: Pushing the scienti�c envelope”:
Bert de Jong (Computational Research Divi-
sion, LBNL)

• “Beyond DFT: predicting excited-state prop-
erties of materials using Green’s function for-
malisms”: Felipe H. da Jornada (Department
of Physics, UC Berkeley).

• “Fast algorithms for localization of Kohn-
Sham orbitals”: Anil Damle (Cornell)

• “Orbital Minimization Method”: Kyle �icke
(Duke)

“Students found (it) useful to see how the mathemat-
ical formulation they learned can be used for real
materials applications and to connect to experimental
investigation at ALS.” (From the MSRI-LBNL closing
report.)
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Publications: 2010-2018

X-ray Free-Electron Lasers
Structure Determination from Experimental Fluctua-
tion X-ray Sca�ering Data, Pande K. et al., 2018 (In
preparation).
Free Electron Laser based Multiple Particle Fluctua-
tion Sca�ering Data, Pande K. et al., 2018 (In prepa-
ration).
Filtering techniques for small/wide-angle and �uctu-
ation X-ray sca�ering, Donatelli J.J., Pande K., and
Zwart P.H., 2018 (In preparation).
Interparticle coherence e�ects in �uctuation X-ray
sca�ering, Donatelli J.J., Pande K., and Zwart P.H.,
2018 (In preparation).
Correlations in Sca�ered X-Ray Laser Pulses Reveal
Nanoscale Structural Features of Viruses, Ruslan P.
Kurta, Je�rey J. Donatelli, Chun Hong Yoon, Pe-
ter Berntsen, Johan Bielecki, Benedikt J. Daurer,
Hasan DeMirci, Petra Fromme, Max Felix Han-
tke, Filipe R.N.C. Maia, Anna Munke, Carl Ne�el-
blad, Kanupriya Pande, Hemanth K.N. Reddy, Jonas
A. Sellberg, Raymond G. Sierra, Martin Svenda,
Gijs van der Schot, Ivan A. Vartanyants, Garth J.
Williams, P. Lourdu Xavier, Andrew Aquila, Peter
H. Zwart, and Adrian P. Mancuso, Phys. Rev. Le�.
119, 158102, 2017.
Reconstruction from limited single-particle di�rac-
tion data via simultaneous determination of state,
orientation, intensity, and phase, Je�rey J. Donatelli,
James A. Sethian and Peter H. Zwart, Proc. Na-
tional Acad. Sciences, 114(28), 7222-7227, 2017.
h�p://www.pnas.org/content/114/28/7222.
Structural enzymology using X-ray free electron
lasers, Christopher Kupitz, Jose L. Olmos Jr., Mark
Holl, Lee Tremblay, Kanupriya Pande, Suraj Pandey,
Dominik Oberthr, Mark Hunter, Mengning Liang,
Andrew Aquila, Jason Tenboer, George Calvey,
Andrea Katz, Yujie Chen, Max O. Wiedorn, Juraj
Knoska, Alke Meents, Valerio Majriani, Tyler Nor-
wood, Ishwor Poudyal, �omas Grant, Mitchell
D. Miller, Weijun Xu, Aleksandra Tolstikova, An-
drew Morgan, Markus Metz, Jose M. Martin-
Garcia, James D. Zook, Shatabdi Roy-Chowdhury,
Jesse Coe, Nirupa Nagaratnam, Domingo Meza,
Raimund Fromme, Shibom Basu, Ma�hias Frank,
�omas White, Anton Barty, Sasa Bajt, Oleksandr

Yefanov, Henry N. Chapman, Nadia Zatsepin, Gar-
re� Nelson, Uwe Weierstall, John Spence, Pe-
ter Schwander, Lois Pollack, Petra Fromme, Ab-
bas Ourmazd, George N. Phillips Jr., and Marius
Schmidt, Structural Dynamics, 4, 044003, 2017,
h�ps://doi.org/10.1063/1.4972069.
Femtosecond structural dynamics drives the
trans/cis isomerization in photoactive yellow protein,
Kanupriya Pande, Christopher D. M. Hutchison,
Gerrit Groenhof, Andy Aquila, Josef S. Robinson, Ja-
son Tenboer, Shibom Basu, Sbastien Boutet, Daniel
P. DePonte, Mengning Liang, �omas A. White,
Nadia A. Zatsepin, Oleksandr Yefanov, Dmitry Mo-
rozov, Dominik Oberthuer2, Cornelius Gati, Ganesh
Subramanian, Daniel James, Yun Zhao, Jake Koralek,
Jennifer Brayshaw, Christopher Kupitz, Chelsie Con-
rad, Shatabdi Roy-Chowdhury, Jesse D. Coe, Markus
Metz, Paulraj Lourdu Xavier, �omas D. Grant, Ja-
son E. Koglin, Gihan Ketawala, Raimund Fromme,
Vukica rajer, Robert Henning, John C. H. Spence,
Abbas Ourmazd, Peter Schwander, Uwe Weier-
stall, Ma�hias Frank, Petra Fromme, Anton Barty,
Henry N. Chapman, Keith Mo�at, Jasper J. van �or,
Marius Schmidt, Science, 352(6286), 725-729, 2016.
h�p://science.sciencemag.org/content/352/6286/725
�e linac coherent light source single particle imaging
road map, Andrew Aquila, Anton Barty, Christoph
Bostedt, Sebastien Boutet, Gabriella Carini, P Drell,
S Doniach, KH Downing, T Earnest, H Elmlund, V
Elser, M Ghr, J Hajdu, J Hastings, SP Hau-Riege, Z
Huang, EE La�man, FRNC Maia, S Marchesini, A
Ourmazd, C Pellegrini, R, Santra, I Schlichting, C
Schroer, JCH Spence, IA Vartanyants, S Wakatsuki,
WI Weis, GJ Williams, Structural Dynamics 2 Issue
4, Pages 041701, 2015/7/1
Iterative phasing for �uctuation X-ray sca�ering J.J.
Donatelli, P.H. Zwart, and J.A. Sethian, Proc. Na-
tional Acad. Sciences, 112(33), 10286-10291, 2015.
h�p://www.pnas.org/content/112/33/10286.
Operational properties of �uctuation X-ray sca�ering
data, E. Malmerberg, C.A. Kerfeld, and P.H. Zwart,
IUCrJ, 2(3), 309-316, May 2015.
Simulations on time-resolved structure determina-
tion of uncrystallized biomolecules in the presence
of shot noise, K. Pande, M. Schmidt, P. Schwan-
der, and D.K. Saldin, Struct Dyn, 2(2), 024103, 2015.
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Deducing fast electron density changes in randomly
oriented uncrystallized biomolecules in a pump-probe
experiment, K. Pande, P. Schwander, M. Schmidt,
and D.K. Saldin, Philos Trans R Soc Lond B Biol Sci,
369(1647), 20130332, 2014.
Time-resolved serial crystallography captures high-
resolution intermediates of photoactive yellow pro-
tein, Jason Tenboer, Shibom Basu, Nadia Zatsepin,
Kanupriya Pande, Despina Milathianaki, Ma�hias
Frank, Mark Hunter, Sbastien Boutet, Garth J.
Williams, Jason E. Koglin, Dominik Oberthuer,
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Conrad, Jesse Coe, Shatabdi Roy-Chowdhury, Uwe
Weierstall, Daniel James, Dingjie Wang, �omas
Grant, Anton Barty, Oleksandr Yefanov, Jennifer
Scales, Cornelius Gati, Carolin Seuring, Vukica Sra-
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Fromme, Abbas Ourmazd, Keith Mo�at, Jasper J.
Van �or, John C. H. Spence, Petra Fromme, Henry
N. Chapman, Marius Schmidt, Science, 346(6214),
1242-1246, 2014.
New Light on Disordered Ensembles: Ab-Initio Struc-
ture Determination of One Particle From Sca�ering
Fluctuations Of Many Copie, D. K. Saldin, H. C. Poon,
M. J. Bogan, S. Marchesini, D. A. Shapiro, R. A.
Kirian, U. Weierstall, and J. C. H. Spence, Phys. Rev.
Le�. 106, 115501 (2011). (viewpoint in Physics).
(ALS highlight)
Structure of a single particle from sca�ering by
many particles randomly oriented about an axis: to-
ward structure solution without crystallization?, D. K.
Saldin, V. L. Shneerson, M. R. Howells, S. Marchesini,
H. N. Chapman, M. Bogan, D. Shapiro, R. A. Kirian,
U. Weierstall, K. E. Schmidt and J. C. H. Spence, New
J. Phys. 12, 035014, (2010).
Algorithmic framework for X-ray nanocrystallo-
graphic reconstruction in the presence of the indexing
ambiguity, Donatelli, J.J. and Sethian, J.A., Proc.
National Acad. Sciences, 111, 2, pp. 593-598, 2014.
h�p://www.pnas.org/content/111/2/593.full.pdf+html
Component Particle Structure in Heterogeneous Dis-
ordered Ensembles Extracted from High-�roughput
Fluctuation X-Ray Sca�ering, G. Chen, P.H. Zwart,
and D. Li, Phys. Rev. Le�., 110(19), May 2013.
�ree-dimensional single-particle imaging using an-
gular correlations from X-ray laser data, H. Liu,
B.K. Poon, D.K. Saldin, J.C.H. Spence, and P.H.
Zwart, Acta Cryst. A, 69(4), 365-373, July 2013.
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Computation of �uctuation sca�ering pro�les via
three-dimensional Zernike polynomials, H. Liu, B.K.
Poon, A.J.E.M. Janssen, and P.H. Zwart, Acta. Cryst.
A, 68(5), September 2012. h�ps://scripts.iucr.org/cgi-
bin/paper?sc5051
Structure determination of Pt-coated Au dumbbells
via �uctuation X-ray sca�ering, G. Chen, M.A. Mod-
estino, B.K. Poon, A. Schirotzek, S. Marchesini, R.A.
Segalman, A. Hexemer, and P.H. Zwart, 19(5), 695-
700, September 2012. h�ps://scripts.iucr.org/cgi-
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Phasing of coherent femtosecond X-ray di�raction
from size-varying nanocrystal, J. C. H. Spence, R.
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Compressive auto-indexing in femtosecond nanocrys-
tallography, F. R. N. C. Maia, C. Yang, and S.
Marchesini, Ultramicroscopy 111(7), 807-811. 2011.
h�p://arxiv.org/abs/1011.3072
Orientation determination for 3D single molecule
di�raction imaging, Chao Yang, Zhen Wang, and
Stefano Marchesini, Proc. SPIE Vol. 7800, 78000P
(2010).

Electronic Structure
Accelerating Optical Absorption Spectra and Exciton
Energy Computation via Interpolative Separable Den-
sity Fi�ing, W. Hu, M. Shao, A. Cepello�i, F. H. da
Jornada, L. Lin, K. �icke, C. Yang and S. G. Louie, ac-
cepted, Intern. Conf. Computational Science, 2018.
PSelInv: A distributed memory parallel algorithm
for selected inversion: the non-symmetric case, M.
Jacquelin, L. Lin and C. Yang, Parallel Comput. 74,
84, 2018
Highly e�cient photocatalytic water spli�ing over
edge-modi�ed phosphorene nanoribbons, W. Hu, L.
Lin, R. Zhang, C. Yang and J. Yang, J. Amer. Chem.
Soc. 139, 15429, 2017
Interpolative separable density ��ing decomposition
for accelerating hybrid density functional calculations
with applications to defects in silicon, W. Hu, L. Lin
and C. Yang, J. Chem. �eory Comput. 13, 5420,
2017
Projected Commutator DIIS Method for Accelerating
Hybrid Functional Electronic Structure Calculations,
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W. Hu, L. Lin and C. Yang, J. Chem. �eory Comput.
13, 5458, 2017
Accelerating selected columns of the density matrix
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Damle, L. Lin and L. Ying, SIAM J. Sci. Comput. 39,
1178, 2017
Robust Determination of the Chemical Potential in
the Pole Expansion and Selected Inversion Method for
Solving Kohn-Sham density functional theory, W. Jia
and L. Lin, J. Chem. Phys. 147, 144107, 2017
A posteriori error estimates for discontinuous Galerkin
methods using non-polynomial basis functions. Part
II: Eigenvalue problems, L. Lin and B. Stamm, Math.
Model. Numer. Anal. 51, 1733, 2017
Localized spectrum slicing, L. Lin, Math. Comp. 86,
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Randomized estimation of spectral densities of large
matrices made accurate, L. Lin, Numer. Math. 136,
183, 2017
Adaptively compressed exchange operator for large
scale hybrid density functional calculations with ap-
plications to the adsorption of water on silicene, W.
Hu, L. Lin, A. Banerjee, E. Vecharynski and C. Yang,
J. Chem. �eory Comput. 13, 1188, 2017
Adaptively compressed polarizability operator for ac-
celerating large scale ab initio phonon calculations, L.
Lin, Z. Xu and L. Ying, Multiscale Model. Simul. 15,
29, 2017
SCDM-k: Localized orbitals for solids via selected
columns of the density matrix, A. Damle, L. Lin and
L. Ying, J. Comput. Phys. 334, 1, 2017
Adaptive local basis set for Kohn-Sham density func-
tional theory in a discontinuous Galerkin framework
II: Force, vibration, and molecular dynamics calcula-
tions, G. Zhang, L. Lin, W. Hu, C. Yang and J.E. Pask,
J. Comput. Phys. 335, 426 2017
PSelInv: A distributed memory parallel algorithm for
selected inversion : the symmetric case, M. Jacquelin,
L. Lin and C. Yang, ACM Trans. Math. So�ware 43,
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Chebyshev polynomial �ltered subspace iteration in
the Discontinuous Galerkin method for large-scale
electronic structure calculations, A. S. Banerjee, L.
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Adaptively compressed exchange operators, L. Lin, J.
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Low rank approximation in G0W0 calculations, M.
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Approximating spectral densities of large matrices, L.
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A proximal gradient method for ensemble density
functional theory, M. Ulbrich, Z. Wen, C. Yang, D.
Klockner, Z. Lu,, SIAM J. Sci. Comp., June 20, 2015,
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Edge-modi�ed phosphorene nano�ake heterojunc-
tions as highly e�cient solar cells, W. Hu, L. Lin,
C. Yang, J. Dai and J. Yang, Nano Le�. 16 1675, 2016
Enhancing the scalability and load balancing of the
parallel selected inversion algorithm via tree-based
asynchronous communication, M. Jacquelin, L. Lin,
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A posteriori error estimates for discontinuous Galerkin
methods using non-polynomial basis functions. Part I:
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Large-scale ab initio simulations based on systemati-
cally improvable atomic basis, P. Li, X. Liu, M. Chen,
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Fast algorithms for estimating the absorption spec-
trum within linear response time-dependent density
functional theory, J. Brabec, L. Lin, M. Shao, N.
Govind, C. Yang, Y. Saad, E. Ng, J. Chem. �eory
Comput. 11, 5197, 2015
A massively parallel method for large scale density
functional theory calculation, W. Hu, L. Lin and C.
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Edge reconstruction in armchair phosphorene nanorib-
bons revealed by discontinuous Galerkin density func-
tional theory, W. Hu, L. Lin and C. Yang, Phys. Chem.
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Compressed representation of Kohn-Sham orbitals via
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Electronic structure of large-scale graphene
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and accurate ab initio materials simulation without
matrix diagonalization, L. Lin, A. Garcia, G. Huhs
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2014
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functions to solve Kohn-Sham density functional the-
ory, J. Kaye, L. Lin and C. Yang, Commun. Math. Sci.
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Elliptic preconditioner for accelerating the self-
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mentation and Applications to X-Ray Imaging, Noack,
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A High-Performance QED Ray Tracer for X-Ray Scat-
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B. Smit, Journal of the American Chemical Society
139 (2017) 5547-5557.
Scanning electron microscopy as a source of mor-
phological data on nanoparticles: image representa-
tiveness, K. Odziomek, D. Ushizima, P. Oberbek, K.
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Exploring frontiers of high surface area metal-organic
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submi�ed to J. Applied Crystallography, 2018 (in
revision).
Accurate Multi-slice Grazing-Incidence X-ray Simu-
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Optics Express 11(19), 2344 (2003),
X-ray �uorescence holography: beyond the di�rac-
tion limit, S. Marchesini, C. S. Fadley, PRB 67, 024115
(2003),
X-ray image reconstruction from a di�raction pat-
tern alone, S. Marchesini, H. He, H. N. Chap-
man, S. P. Hau-Riege, A. Noy, M. R. Howells, U.
Weierstall, J.C.H. Spence, PRB 68, 140101(R) (2003),
[arXiv:physics/0306174].
X-ray microscopy by phase-retrieval methods at the
advanced light source, M.R. Howells, H. Chapman,
S. Hau-Riege, H. He, S. Marchesini, J. Spence and U.
Weierstall, J. Phys. IV 104 Pr2-557 (2003)

XiCAM, User Interfaces, Work�ows, Remote
Execution
Xi-cam: A versatile interface for data visualization
and analysis, Pandol�, R., et al, submi�ed to J. Syn-
chrotron Radiation, Jan., 2018.
On-the-�y data assessment for high throughput X-
ray di�raction measurement, Ren, F., Pandol�, R.,
Van Campen, D., Hexemer, A., and Mehta, A.: ACS
Comb. Sci. 19, 377-385, 2017.
Nanosurveyor: a framework for real-time data pro-
cessing, B.J. Daurer, H. Krishnan, T. Perciano, F.
R.N.C. Maia, D.A. Shapiro, J.A. Sethian, S. March-
esini, arXiv:1609.02831. Advanced Structural and
Chemical Imaging 20173:7.
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Talks: 2010-2018

X-ray Free-Electron Lasers
Structure determination from experimental multi-
particle �uctuation sca�ering data, Zwart, Petrus
H, 5th Ringberg Meeting on Structural Biology
with FELs, Max Planck Geselscha� Ringberg Castle,
February 2018
Structure determination from experimental multi-
particle �uctuation sca�ering data, Zwart, Petrus
H, PETRA-IV planning meeting, Hamburg, DESY,
February 2018
Structure determination from experimental multi-
particle �uctuation sca�ering data, Zwart, Petrus H,
Netherland Cancer Institute, Amsterdam, February
2018
Fluctuation X-ray Sca�ering�, Zwart, Petrus H, LCLS-
II-HE First experiments meeting, Stanford Linear Ac-
celerator Center, October 2017
Fluctuation X-ray sca�ering at the ALSu, Zwart,
Petrus H. �ALS-U: Solving scienti�c challenges with
coherent so� X-rays�, January 2017.
From Blobology to Biology: How advanced mathemat-
ics and algorithms can enable new high-resolution
studies of uncrystallized biomolecules at the LCLS-
II-HE, Donatelli, Je�rey, LCLS-II-HE �First Experi-
ments” Meeting: AMO, Biology, and �antum Mate-
rials, SLAC National Accelerator Laboratory, Menlo
Park, CA, November 2017.
New Mathematics for Next-Generation X-ray Imag-
ing, Donatelli, Je�rey, 2017 ASCR Applied Mathe-
matics Principal Investigators Meeting, Rockville,
MD, September 2017.
Reconstruction Algorithms for Next-Generation Imag-
ing: Multi-Tiered Iterative Phasing for Fluctuation
X-ray Sca�ering and Single-Particle Di�raction, Do-
natelli, Je�rey, AI-at-SLAC Seminar, SLAC National
Accelerator Laboratory, Menlo Park, CA, August
2017.
Femtosecond Structural Dynamics of Photoactive Yel-
low Protein, Pande, Kanupriya, IUCr Congress, Hy-
derabad, India, August 2017.
New approaches to structure determination from un-
crystallized biomolecules, Donatelli, Je�rey, UWM
Colloquium, Milwaukee, WI, April 2017.
Reconstruction of RDV and PR772 from angular cor-
relations via multi-tiered iterative phasing, Donatelli,

Je�rey, Single Particle Initiative Data Analysis Meet-
ing, March 2017.
Analysis of XFEL Sca�ering Data from Nanocrystals
and Biomolecules, Pande, Kanupriya, CRD Postdoc
Seminar, LBL, Berkeley, CA, March 2017.
Data analysis challenges for next-generation imaging,
Donatelli, Je�rey, CS Strategy for Data, Berkeley,
CA, December 2016.
Fluctuation X-ray Sca�ering, Zwart, Petrus H, LCLS-
II-HE First experiments meeting, Stanford Linear Ac-
celerator Center, SSRL user meeting, October 2016
Fluctuation X-ray sca�ering analysis of single particle
RDV data, Donatelli, Je�rey, Single Particle Initia-
tive Data Analysis Meeting, February 2016.
Macromolecular Reconstruction from Fluctuation X-
ray Sca�ering and Single-Particle Di�raction, Do-
natelli, Je�rey, 2016 Linac Coherent Light Source
User Meeting, SLAC National Accelerator Labora-
tory, Menlo Park, CA, October 2016.
Multi-tiered iterative phasing for �uctuation X-ray
sca�ering and single-particle di�raction, Donatelli,
Je�rey, 12th International Conference on Biology
and Synchrotron Radiation, SLAC National Acceler-
ator Laboratory, Menlo Park, CA, August 2016.
Multi-tiered iterative phasing for �uctuation X-ray
sca�ering and single particle imaging, Donatelli, Jef-
frey, BioXFEL 3rd International Conference, San
Juan, Puerto Rico, January 2016.
New Mathematics for Single and Multiple Particle
Analysis from XFEL Data, Donatelli, Je�rey, Future
Electron Microscopy at LBNL Workshop, Berkeley,
CA, October 2016.
Reconstruction algorithms for next generation imag-
ing: Multi-tiered iterative phasing for �uctuation
X-ray sca�ering and single-particle di�raction, Do-
natelli, Je�rey, �e Center for Advanced Mathemat-
ics for Energy Research Applications (CAMERA)
Seminar, Lawrence Berkeley National Laboratory,
Berkeley, CA, May 2016.
Structure determination from �uctuation X-ray scat-
tering and single-particle di�raction via multi-
tiered iterative phasing, Donatelli, Je�rey Biological
Physics Seminar, Arizona State University, Tempe,
AZ, November 2016.
Fluctuation X-ray Sca�ering, Zwart, Petrus H,
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Janelia Crystallography Conference, Janelia Farm /
HHMI, October 2015
Fluctuation X-ray Sca�ering, Zwart, Petrus H, LCLS-
II Scienti�c Opportunities Workshops, February
2015
Macromolecular reconstruction from �uctuation X-
ray sca�ering, Donatelli, Je�rey, External Comput-
ing Sciences Strategic Plan Review, Lawrence Berke-
ley National Laboratory, Berkeley, CA, September
2015.
Multi-tiered iterative phasing for �uctuation X-ray
sca�ering reconstruction, Donatelli, Je�rey, 2015 Ad-
vanced Light Source User Meeting, Lawrence Berke-
ley National Laboratory, Berkeley, CA, October
2015.
Algorithms for X-ray nanocrystallography in the pres-
ence of the indexing ambiguity, Donatelli, Je�rey,
BES Triennial Ops Review, Lawrence Berkeley Na-
tional Laboratory, Berkeley, CA, March 2014.
Algorithms for X-ray nanocrystallography in the pres-
ence of the indexing ambiguity, Donatelli, Je�rey,
Mathematics and Statistical Methodologies for DOE
Data-Centric Science at Scale, Lawrence Berkeley
National Laboratory, Berkeley, CA, March 2014.
An algorithmic framework for X-ray nanocrystallo-
graphic reconstruction in the presence of the indexing
ambiguity, Donatelli, Je�rey, Applied Mathematics
Seminar, UC Berkeley, Berkeley, CA, April 2014.
Fluctuation Sca�ering, Zwart, Petrus H., Gordon Re-
search Conference: Di�raction Methods in Struc-
tural Biology, Lewiston, Maine, July 2014.
Biological Solution Sca�ering with an FEL: challenges
and opportunities, Zwart, Petrus H. Photon Sciences
Seminar, SLAC, October 2013.
Compressive phase retrieval for X-ray nanocrystallog-
raphy, Donatelli, Je�rey, 2013 DOE CSGF Annual
Program Review, Arlington, VA, July 2013.
Orientation recovery in single particle X-ray imaging:
A di�usion map approach, Donatelli, Je�rey, Applied
Mathematics Seminar, UC Berkeley, Berkeley, CA,
April 2012.
New Light on Disordered Ensembles: Ab Initio Struc-
ture Determination of One Particle from Sca�ering
Fluctuations of Many Copies, Marchesini, Advanced
Light Source, Berkeley CA, 2011.
Orientation determination for 3D single molecule
di�raction imaging, C. Yang, S. Marchesini, SPIE
Conference San Diego 2011.

Ab Initio Compressive Phase retrieval, S. Marchesini
IUCR conference Osaka, Japan, 2008.
Inverse problems for ultrafast high resolution x-ray
imaging, S. Marchesini, SIAM Conference on Imag-
ing Science, San Diego, CA, July 7-9, 2008.
Computational Lenses, S. Marchesini, �e Interna-
tional Workshop on Phase Retrieval and Coherent
Sca�ering, Asilomar, California, USA, June 2007.

Electronic Structure
Numerical methods for Solving Coulpled Cluster
Equations, Yang, Chao, Oberwolfach Workshop on
Mathematics and �antum Chemistry, March 2018.
Variational formulation for �ndingWannier functions
with entangled band structure, Lin, L., MaX Con-
ference on the Materials Design Ecosystem at the
Exascale: High-Performance and High-�roughput
Computing, Trieste, January 2018
DGDFT: A massively parallel electronic structure
calculation tool for electronic structure calculations,
Yang, Chao, Workshop on Massively Parallel Com-
putational Chemistry, Kobe, Japan, Jan 2017.
Electronic Structure Calculations for Large Systems,
Lin, L., Workshop on Density-Functional �eory
and Beyond: Accuracy, E�ciency, and Reproducibil-
ity in Computational Materials Science, Berlin, Au-
gust, 2017
Electronic Structure Calculations for Large Systems,
Lin, L., Computational Physics at the Petascale and
Beyond (invited talk), APS March Meeting, New
Orleans, March, 2017
Fast Algorithms for Estimating Optical Absorption
Spectrum, Yang, Chao, IMA Workshop on Nano-
optics, Minneapolis, Apr, 2017.
Iterative Methods for Solving Coupled Cluster Equa-
tions, Yang, Chao, SIAM Conference on Optimiza-
tion, Vancouver, May, 2017.
Fast algorithm for estimating optical absorption spec-
trum via linear response TDDFT, Yang, Chao, Work-
shop on Mathematical and Computational Methods
in �antum Chemistry, Yale, May 2016
Fast algorithms for hybrid functional electronic struc-
ture calculations, Lin, L., International Conference
on Algorithms and Applications for Excited State
Electronic Structure �eories, CSRC, Beijing, Au-
gust 2016
Fast algorithms for hybrid functional electronic struc-
ture calculations, Lin, L., Workshop on Mathematical
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and Computational Methods in �antum Chem-
istry, Yale, May 2016
Fast electronic structure calculation methods for
studying low dimensional nanomaterials, Yang, Chao,
SIAM Conference on Mathematical Aspects of Ma-
terials, Philadelphia, May 2016
Low-rank approximation in G0W0 Calculation, Yang,
Chao, Workshop on Mathematical and Numeri-
cal Analysis for Electronic Structure Calculations,
Rosco�, Jun, 2016.
Recent Advances in Numerical Methods for Electronic
Structure Calculations, Yang, Chao, International
Conference on Algorithms and Applications for Ex-
cited State Electronic Structure �eories, CSRC, Bei-
jing, August 2016.
Electronic Structure Calculations for Large Systems,
Lin, L., Upscaling Electronic Structure: Reduced-
Scaling and Multi-Scale Methods (invited talk), Psi-k
2015, San Sebastian, September 2015
Electronic Structure Calculations for Large Systems,
Lin, L., Minisymposium on Recent Progress in Multi-
scale Modeling at the Intersection of Ab-initio Meth-
ods, Mechanics and Mathematics, 13th U.S. Na-
tional Congress on Computational Mechanics (US-
NCCM13), San Diego, July 2015
A posteriori error estimates for discontinuous Galerkin
methods using non-polynomial basis function, Lin, L.,
Workshop on Mathematical and Numerical Meth-
ods for Complex �antum Systems, Chicago, March
2014
A posteriori error estimates for discontinuous Galerkin
methods using non-polynomial basis function, Lin, L.,
Workshop on Numerical Solution of PDE Eigenvalue
Problems, Oberwolfach, November 2013
Electronic Structure Calculations for Large Systems,
Lin, L., Materials defects: Mathematics, Computa-
tion, and Engineering Workshop I: �antum and
Atomistic Modeling of Materials Defects, IPAM, Oc-
tober 2012
Electronic Structure Calculations for Large Systems,
Lin, L., �ematic Minisymposia: �antum modeling
in molecular simulation, International Council for
Industrial and Applied Mathematics (ICIAM 2011),
Vancouver, July 2011

GISAXS/WAXS/SAXS
Strategies for X-ray Analysis Hexemer, Alexander,
GISAS Workshop Munich February 2018
Pursuing the critical dimension in the etched pat-
terns using x-ray sca�ering Freychet, Guillaume,
APS March Meeting 2018, Los Angeles CA, March
2018.
Critical-Dimension Grazing Incidence Small Angle X-
ray Sca�ering Freychet, Guillaume, SPIE advanced
lithography 2018, San Jose CA, February 2018.
Towards Real-Time Analysis of Morphologies using
Sca�ering Hexemer, Alexander, APS March meeting
2018
In�uence of Molecular Structure Hexemer, Alexander,
DOW Chemicals, October 2017
Towards real-time analysis of morphologies using x-
ray sca�ering Freychet, Guillaume, EUVL Workshop
2017, Berkeley CA, June 2017.
Strategies for Multi-Modal Analysis Hexemer,
Alexander, APS March meeting 2017
Strategies for Multi-Modal Analysis Hexemer,
Alexander, UC Irvine seminar 2017
Strategies for Multi-Modal Analysis Hexemer,
Alexander, Air Force Research Lab Dayton Ohio
seminar 2017
Strategies for X-ray Analysis Hexemer, Alexander,
Columbia University November 2017
Strategies for X-ray Analysis Hexemer, Alexander,
NYU November 2017
Xi-CAM: Pursuing the critical dimension using x-ray
sca�ering Freychet, Guillaume, ALS User Meeting
2017, Berkeley CA, October 2017.
Addressing the data challenge at the ALS Hexemer,
Alexander, Pandaas2 meeting ESRF July 2016
Addressing the data challenge at the ALS Hexemer,
Alexander, AMI seminar Switzerland July 2016
An Automated, High-�roughput System for GISAXS
and GIWAXS measurements of thin �lms Hexemer,
Alexander, APS March meeting 2016
X-ray Studies of Nano Composites Hexemer, Alexan-
der, APS March meeting 2016
Addressing the data challenge in Small Angle Sca�er-
ing Hexemer, Alexander, SOLEI France 2015
Addressing the data challenge in Small Angle Sca�er-
ing Hexemer, Alexander, MRS meeting 2015
Addressing the data challenge in Small Angle Sca�er-

54



ing Hexemer, Alexander, Plenary Talk Small Angle
Sca�ering Meeting September 2015
Addressing the data challenge in Small Angle Scat-
tering Hexemer, Alexander, BACATECH Meeting
September 2015
Addressing the data challenge in Small Angle Sca�er-
ing Hexemer, Alexander, NSLS II seminar November
2015
Addressing the data challenge in Small Angle Sca�er-
ing Hexemer, Alexander, WSU seminar 2015
DOE Date Demos and SPOT Hexemer, Alexander,
OLCF User Meeting, 2015
Fast Analysis of Time-Resolved Sca�ering Data Hex-
emer, Alexander, APS March meeting 2015
High Performance Toolkit for Photon Science Hexe-
mer, Alexander, Oak Ridge National Lab, 2015.
High Performance Toolkit for Photon Science Hexe-
mer, Alexander, canSAS Meeting Kyoto, 2015.
High Performance Toolkit for Photon Science Hexe-
mer, Alexander, Kyoto Institute of Technology, 2015.
High Performance Toolkit for Photon Science Hexe-
mer, Alexander, ISPAC Houston, 2015.
SAXS and WAXS of So� and Functional Materials
hexemer, Alexander, Shanghai Synchrotron Semi-
nar, October 2015
Slot-die printing at the SynchrotronHexemer, Alexan-
der, NIST seminar, May 2015
Towards Automated Analysis of X-ray Sca�ering Data
Kumar, Dinesh, CSCS Swiss National Supercomput-
ing Center, November 2015
Towards Automated Analysis of X-ray Sca�ering Data
Kumar, Dinesh, Adolphe Merkle Institute, October
2015
Automation of Data Calibration for SAXS/WAXS Scat-
tering Experiments Kumar, Dinesh, 2014 Advanced
Light Source User Meeting, October 2014.
Beyond Petascale with the HipGISAXS So�ware Suite
Hexemer, Alexander , APS March Meeting 2014
Beyond Petascale with the HipGISAXS So�ware Suite
Hexemer, Alexander , SC14, 2014
High Perfromance GISAXS Hexemer, Alexander,
ACA meeting 2014
Mathematics for grazing incidence small angle X-ray
sca�ering: Accurate form factor computation and
automatic peak detection Donatelli, Je�rey, 2014 Ad-
vanced Light Source user Meeting, October 2014.

HipGISAXS: A Massively Parallel Code for GISAXS
Simulation Chourou, Slim, APS March Meeting 2013
High performance GISAXS Hexemer, Alexander,
GISAXS 2013 Hamburg, 2013
GISAXS simulation and analysis on GPU clusters
Chourou, Slim, APS March Meeting 2012

Tomography
Energy Materials by integrating MicroCT with mi-
croscopy, spectroscopy, and sca�ering, Parkinson DY,
American Chemical Society, Symposium on Multi-
modal Characterization of Energy Materials, Wash-
ington, DC, August 2017
A survey of available algorithms and so�ware for
synchrotron microCT, Pelt, D.M., CAMERA Work-
shop: Algorithms and So�ware for Tomographic
Reconstruction for Beamlines, November 2017
E�ciently parallelizable approximations to regular-
ized iterative reconstruction algorithms, Pelt, D.M.,
CAMERA Workshop: Algorithms for Tomographic
Reconstruction: State-of-the-Art and Future Goals,
November 2016
Tomography So�ware at LBNL, Parkinson, DY, Algo-
rithms for Tomographic Reconstruction, Berkeley,
CA, Nov. 9-11, 2016.
Optimizing tomographic reconstruction for speci�c
analysis tasks, Pelt, D.M., 2016 Advanced Light
Source User Meeting, October 2016.
Case Studies in Multi-Modal Imaging, Parkinson
DY, Multi-modal Data Analysis Workshop and
Hackathon, Argonne National Laboratory, April 4-8,
2016
3D Imaging of Energy Materials, Parkinson DY, �e
1st Workshop on Synchrotron Radiation Research
and Energy Science between FUNSOM and ALS,
Soochow University, Suzhou, China. October 28-31,
2015,
Time-resolved High Temperature Tomography,
Parkinson DY, XRM2014, 12th International Con-
ference on X-ray Microscopy, Melbourne, Australia,
October 27-31, 2014.
�anti�cation of microstructures from microtomog-
raphy images, Parkinson DY, Machine Learning for
Science, November 4, 2013.
Multi-scale x-ray tomography at the ALS, Parkinson
DY, ALS/CXRO Seminar, 24 August 2011
Automating image registration, reconstruction, and
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segmentation at the ALS tomography beamlines,
Parkinson DY, Stanford Synchrotron Radiation
Lightsource Users Meeting, 20 October 2010
Image processing for synchrotron-based hard and so�
x-ray tomography, Parkinson DY, Xradia Seminar, 1
December 2010

Image Analysis
Searching images: characterization, retrieval and
ranking for pictures across domains, D. Ushizima,
Expanding Your Horizons Technical Career Work-
shops for Young Women (EYH - Sonoma County
Chapter): motivating young women in science +
mathematics, Sonoma State University, April 2018.
Computer-Aided Design and 3D Printing Workshop,
D. Ushizima, Black Girls Code: Bay Area Chapter,
San Francisco CA, April 2018.
Scienti�c Image Analysis with Convolutional Neural
Networks, D. Ushizima, CoDA, Santa Fe, March 2-4,
2018.
Machine learning for image across domains, D. Ushiz-
ima, Spring 2018 Internships Brown Bag Series,
Berkeley Lab, March 2018.
Machine Learning for Transformative Scienti�c Dis-
covery, D. Ushizima, Silicon Valley Community
Foundation Visit, Berkeley Lab, February 2018.
Image across Domains, Algorithms, Experiments and
Learning: a DOE ECRP in pa�ern recognition, D.
Ushizima, Early Career Enrichment Program, Berke-
ley Lab, February 2018.
Deep learning for billion-pixel digital pathology anal-
ysis: application inmapping Tau protein in the human
brain, M. Alegro, D. Ushizima, Deep Learning in
Biomedicine. UCSF, San Francisco, February 2018.
Predictive brain imaging, L. Grinberg, D. Ushizima,
DOE o�cials visit UCSF, San Francisco CA, January
2018.
Mathematics in Pa�ern Recognition for Scienti�c In-
vestigations, T. Perciano, DOE Scienti�c Machine
Learning Workshop, January 2018.
Data Science in practice: dealing with image across
domains using machine learning, D.Ushizima, Uni-
�ed Meeting of Computer Scientists (ENUCOMP),
Parnaiba PI, Brazil, November 2017.
Data Science in practice: dealing with image across do-
mains using machine learning, D.Ushizima, Unifesp
Computer Science Seminars, Federal University of
Sao Paulo, Sao Paulo, Brazil, November 2017.

Science impact, visibility and networking at LBNL, D.
Ushizima, CRD Training Workshop, Berkeley Lab,
November 2017.
Computer vision and deep learning for experimental
observational images, D. Ushizima, Workshop on
Xi-CAM and other New So�ware for Synchrotron
Users, from the ALS, CAMERA, and Collaborators,
ALS Annual User Meeting, Berkeley Lab October
2017.
Science, Technology & Engineering women�s career
within the UC system and new resources, D. Ushizima
and R. Chakraborty, Women in Science and Tech-
nology Council (WSEC) Meeting, October 2017.
Data Science for Image across Domains, Experiments,
Algorithms and Learning, D. Ushizima, Data Science
at Scale School, Los Alamos National Laboratory,
Aug 2017.
�antitative microscopy applied to diverse specimens:
materials and cells, Biotechnology Graduate Semi-
nars, Federal University of Ouro Preto, Brazil June
2017.
High �roughput Reverse Image Search with py-
CBIR: �anti�cation, Search, Retrieval and Rank-
ing for Multi-modal Imaging, D. Ushizima, Work-
shop in Multi-dimensional and Multi-modal X-ray
Imaging and Analysis, Making and Measuring in
4-Dimensions, NSLS-II and CFN User�s Meeting,
Brookhaven National Laboratory, May 2017.
Building the analytical instrumentation for mi-
croscopy image analysis, D. Ushizima, 4D Advanced
Microscopy of Brain Circuits Course, Zeiss Mi-
croscopy Center, UC Berkeley April 2017.
Searching images with images: characterization, re-
trieval and ranking, D. Ushizima, Microso� Research
Sea�le March 2017.
Image Segmentation Across Domains using Parallel
Markov Random Field Technique, ImageXD, T. Per-
ciano, March 2017
Modeling Energy Materials by integrating MicroCT
with microscopy, spectroscopy, and sca�ering, Parkin-
son DY, American Chemical Society, Symposium on
Multimodal Characterization of Energy Materials,
Washington, DC, August 2017
Using convnets to �nd relevant cells, D. Ushizima, Cal-
ifornia Cognitive Science Conference, UC Berkeley,
May 2017.
Future Directions & Areas of Joint Interest in Data
Science, D. Ushizima, Computational Health Science
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Symposium, Institute for Computational Health Sci-
ences, UC San Francisco, April 2017.
Images Across Domains, Experiments, Algorithms
and Learning, D. Ushizima, DOE ASCR Computer
Science Principal Investigators’ (PI) Meeting: Re-
silience, SSIO, Design Space and SDMAV, Bethesda
MD March 2017.
Women in STEM during the digital revolution, D.
Ushizima, TechWomen Program, Mount Kenya Uni-
versity, Kenya February 2017.
Breaking the glass ceiling, D. Ushizima, TechWomen
Program and Safaricomm, Tribe Hotel, Nairobi,
Kenya, February 2017.
Identifying visual cues to enable searching of 3D im-
ages, D. Ushizima, ALS Annual Users� Meeting,
Berkeley Lab, Oct 2016.
Scaling Analytics for Scienti�c Images from Experi-
mental Instruments, D. Ushizima, IEEE Applied Im-
agery Pa�ern Recognition, Washington DC, Oct
2016.
TechWomen Program Debrie�ng, D. Ushizima, Tech-
Women Panel at the U.S. Dept of State, Washington
DC, October 2016.
3D image analysis and impact on Alzheimers disease,
D. Ushizima, Moore-Sloan Foundation Data Science
Environments Workshop, NY October 2016.
Searching for images across domains with CBIR,
D. Ushizima, CAMERA Seminars, Berkeley Lab,
September 2016.
Searching for images across domains with convolu-
tional neural networks, D. Ushizima, Computational
Sciences and Engineering Conference - the integra-
tion of experiment, big data, and modeling and sim-
ulation into instruments for discoveries in science
and engineering, Gatlinburg, TN, Aug 2016.
From Face Detection to the Faces of Scienti�c Images,
D. Ushizima, ImageXD Inaugural Workshop. UC
Berkeley June 2016.
Robot Expo - building with NXT, D. Ushizima, Black
Girls Code: Bay Area Chapter, UC Berkeley, Dec
2016.
Searchable datasets in Python: images across domains,
experiments, algorithms and learning, D. Ushizima,
PyData San Francisco October 2016.
DOE Early Career Program D. Ushizima, Panel with
Director of the O�ce of Science Department of En-
ergy Cherry Murray at Berkeley Lab Aug 2016.

Accelerating discovery from image-based experiments
D. Ushizima, NCEM User Meeting Symposium,
Berkeley Lab Aug 2016.
An overview of my research career and its challenges,
T. Perciano. BLUFF Student, BLUR, CCI, SULI and
VFP Student: Brown Bag Meeting, LBNL, June 2016
Gaining insight into image-based data collected from
experimental science projects, T. Perciano, Computer
Science Seminar, LBNL, June 2016
Picture is worth 1,000 words, but how to extract in-
formation from them? D. Ushizima, SULI, CCI and
BLUR: Brown Bag Meeting March 2016.
Unveiling information from scienti�c images D.
Ushizima, Pub-tech, Stanford CA, March 2016.
Mathematical tools for analysis of high resolution,
time-resolved 3D X-ray images T. Perciano, Confer-
ence on Data Analysis 2016. March 2016.
Recognizing Pa�erns from Experimental Data D.
Ushizima, Driving Discovery: Integration of Multi-
Modal Imaging and Data Analysis, TMS Annual
Meeting & Exhibition, Feb 2016
Investigating recognition methods for a new National
Library of Medicine Image Dataset, D. Ushizima, Ad-
vances in Visual Computing: 11th Int. Symp, ISVC
2015, Las Vegas, NV, USA, Dec 14-16, 2015.
Fast detection of material deformation through struc-
tural dissimilarity T. Perciano, IEEE International
Conference on Big Data, November 2015.
Real-Time data pipeline and analysis using SPOT and
HipGISAXS Hexemer, Alexander, GISAS Nice 2015.
Scaling Analytics for Image-based Experimental Data
D. Ushizima, 3D Image Visualization and Analysis
Tutorial, 2015 ALS User Meeting, October 2015.
Multi Platform image processing tools for micro-CT T.
Perciano, 3D Image Visualization and Analysis Tu-
torial at the 2015 ALS User Meeting, October 2015.
CRIC Hackathon for Cell Recognition and Materials
AnalysesCRIC Conference, Fortaleza CE, Brazil, July
2015.
Image Processing and Visualization using R, T. Per-
ciano, Postdoc Seminars Series at LBL, June 2015
Picture is worth 1,000 words, but how to extract in-
formation from them? D. Ushizima, CRD Summer
Students Brown Bag, Berkeley Lab Mar 2015.
Scalability of Scienti�c Image Analysis, D. Ushizima,
Informs Annual Meeting: Bringing Data and Deci-
sions, San Francisco, CA, Nov 2014.
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Structure Recognition from High Resolution Images of
Ceramic Composites, D. Ushizima, T. Perciano, 2014
IEEE International Conference on Big Data, October
2014.
Visualization and analysis of high throughput exper-
iments D. Ushizima, I Imaging Initiative Workshop:
Tomography and Ptychography, Argonne National
Laboratory, Chicago IL, September 2014.
Image Processing and Analysis Challenges: An
Overview of Di�erent Applications, T. Perciano, Data
Analytics and Visualization Group Seminar Series,
September 2014
Teaching machines and machine learning D. Ushiz-
ima, NERSC Brown Bag, July 2014.
Image analysis and statistics: an introduction using
R and RIPA T. Perciano, �e International R Users
Conference, June 2014.
Delving into R Analytics for Image Analysis T. Per-
ciano, Workshop on Algorithms for Modern Massive
Data Sets, June 2014.
Dynamic Tomography at the Advanced Light Source,
Parkinson DY APS user meeting, 4D Imaging Ap-
plications in Dynamic Studies Workshop, May 14,
2014
Mathematics of Computer Vision D. Ushizima. Out-
reach Program Bay Area Schools, HRS Oakland CA,
March 2014.
Segmentation of subcellular compartments combin-
ing superpixel representation with Voronoi diagrams
- awarded 1st place in code competition, D. Ushiz-
ima, IEEE International Symposium on Biomedical
Imaging, Beijing, China April 2014.
How images shape your life, and shapes from images
D. Ushizima, LBNL Workforce Development and
Education Seminar, Berkeley, February 2014.
Analysis and visualization of image-based experi-
ments D.Ushizima, Current Challenges in Comput-
ing (C3) Conference, Napa CA, August 2013.
Challenges and New Developments in Imaging with
Large Data Sets, D. Ushizima, Joint Statistical Meet-
ing (JSM2013), Montreal, Aug 2013.
Data analysis and management D. Ushizima, LBNL
Brain Workshop, Berkeley Lab, July 2013.
Image analysis of experimental data D. Ushizima,
Workshop of the Program on Statistical and Com-
putational Methodology for Massive Datasets, Sta-
tistical and Applied Mathematical Sciences Institute

(SAMSI), Research Triangle, MD, 2013.
Characterization of MRI brain scans associated to
Alzheimer’s disease through texture analysisD. Ushiz-
ima, IEEE International Symposium on Biomedical
Imaging, New York NY, April 2013.
science image analysis using quant-CT in ImageJ, D.
Ushizima, ImageJ User and Developer Conference,
Luxembourg, LX, Oct 2012.
Algorithms for Microstructure Description applied to
Microtomography, D. Ushizima, Carbon Cycle 2.0
Symposium, LBNL, Fev. 10. 2012.
I/O Workload Analysis with Server-side Data Col-
lection, D. Ushizima, SuperComputing 2011 (SC11),
Sea�le, WA, Nov. 13 2011.
Statistical segmentation and porosity quanti�cation
of 3D x-ray microtomography, D.Ushizima, SPIE Op-
tics and Photonics: XXXIV Applications of Digital
Image Processing, Vol.8135-1, pp.1-14, San Diego,
CA, Aug 2011.
Tracking cell dynamics from time-lapse laser scanning
microscopy imagery D. Ushizima, Physical Sciences
- Oncology Centers Annual Site Visit, Berkeley, CA,
Aug 2011.
Computed tomography analysis in multiscale con-
trol of geologic CO2 D. Ushizima, Free University of
Berlin, Germany: Institute of Computer Science and
Konrad Zuse Institute of Information Technology,
Berlin, June 2011.
Statistical regions in porous media and 3D structure
characterization, D. Ushizima, Bay Area Vision Meet-
ing, Google, Apr 2011.
Analysis and visualization for multiscale control of ge-
ologic CO2 D. Ushizima, Scidac Conference, Denver
CO, July 2011.
Minimizing I/O contention at NERSC using data anal-
ysis, D. Ushizima, Workshop on Algorithms for Mod-
ern Massive Data Sets (MMDS’10), Stanford, CA,
June 15-18, 2010
Vessel Network Detection Using Contour Evolution
and Color Components, D. Ushizima, 32nd Annual
International Conference of the IEEE Engineering
in Medicine and Biology Society, Buenos Aires, Ar-
gentina. Sept 2010.
Retinopathy diagnosis from ocular fundus image anal-
ysis, D. Ushizima, Modeling and Analysis of Biomed-
ical Image, SIAM Conference on Imaging Science
(IS10), Chicago, Il, April 12-14th, 2010.
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Ocular fundus and retinopathy characterization, D.
Ushizima, Bay Area Vision Meeting, Feb 5th, Berke-
ley, CA 2010.

Materials Informatics
Discovery of nanoporous materials for energy appli-
cations, Maciej Haranczyk, Paci�chem, 2015, Dec
15-20, Honolulu, HI
Exploring Frontiers of Advanced Porous Materials,
Maciej Haranczyk, Denver, CO, March 2015
Discovery of Porous Materials for Energy Applications,
Maciej Haranczyk, MOF 2014 meeting, Kobe, Japan,
Sept-Oct 2014
Exploring Frontiers of the Material Space of Metal-
Organic Frameworks, Telluride, CA, July 2014
Similarity Searching and Screening for Porous
Materials, She�eld Cheminformatics Conference,
She�eld, UK, July 2013
Exploring frontiers of high surface area MOFs, EURO-
MAT 2013, Sevilla, Spain, September 2013

Ptychography
A Look into the Future of X-Ray Imaging: When Pty-
chography Meets GPU Acceleration Stefano March-
esini, Pablo Enfedaque, GPU Technology Confer-
ence (GTC), San Jose, CA, March 2018
High�roughput Phase Retrieval Stefano Marchesini,
in Phaseless Imaging in �eory and Practice: Realis-
tic Models, Fast Algorithms, and Recovery Guaran-
tees, Institute for Mathematics and Its Applications,
University of Minnesota, August 14 - 18, 2017
Fast convergent spli�ing algorithms for (blind) phase
retrieval with/without sparse prior Huibin Chang,
LBNL, Berkeley, June 2017
X ray Sca�ering and Phase Retrieval Stefano March-
esini , Optical Imaging and Inverse Problems, Insti-
tute for Mathematics and Its Applications, Univer-
sity of Minnesota, February 13 - 17, 2017
Lens design for X-ray imaging, Huibin Chang, Ste-
fano Marchesini, Anne Sakdinawat, (SSRL/SLAC),
Joint Mathematics Meeting Special Session on the
Mathematics of Signal Processing, Jan. 7th, 2017
Streaming Ptychography,, Workshop on Control Sys-
tems for Next Generation Experiment Control at X-
Ray Light Sources,S. Marchesini, Lawrence Berkeley
National Laboratory, September 12-14, 2016
Nanoscale coherent X-ray imaging,, S. Marchesini,

Los Alamos National Laboratory, New Mexico, May
23-26, 2016
Ptychography in real time,, S. Marchesini, SIAM
conference on Imaging Science (Albuquerque, New
Mexico, May 23-26), 2016
High throughput Coherent X-ray imaging, S. March-
esini, Coherence 2016, SAINT MALO France, June
7-10 2016
Nanoscale coherent X-ray imaging, S. March-
esini, Stanford Pulse Institute, December, 2015
h�ps://ultrafast.stanford.edu/events/pulse-special-
seminar-nanoscale-coherent-x-ray-imaging
CAMERA-SHARP So�ware tools for real-time ptycho-
graphic imaging, T. Perciano, Ultra-high Resolution
X-ray Imaging for the Energy Sciences at the COS-
MIC Beamline, at the 2015 ALS User Meeting, 2015.
Frame-wise synchronization for blind ptychography,
S. Marchesini , Mathematics and Computer Science,
Argonne National Lab, Aug 27 2015.
Multi Platform image processing tools for micro-CT,
T. Perciano, 3D Image Visualization and Analysis
Tutorial at the 2015 ALS User Meeting, 2015.
So� x-ray ptychography of nanomaterials at the Ad-
vanced Light Source, David Shapiro (contributed),
Synchrotron Radiation Instrumentation 2015
High-dimensional imaging with nanometer resolution
using so� x-rays, David Shapiro , Gordon Research
Conference on X-ray Science, July 2015
Phase retrieval in high dimensions, S. Marchesini,
Colloquium CFEL DESY, Hamburgy 19 Dec 2014
So� x-ray microscopy with wavelength limited spa-
tial resolution, Davud Shapiro, invited talk, Ele�ra
Workshop on Advances in X-ray imaging, December
2014,
X-ray ptychography for nano-materials research,
David Shapiro, �e international conference on
X-ray microscopy (XRM2014), October 2014, Mel-
bourne
So� x-ray microscopy with wavelength limited spatial
resolution, David Shapiro, Workshop in support of
the Australian Center of Excellence in Synchrotron
Science, November 2014, Melbourne
Di�ractive x-ray imaging, David Shapiro, Work-
shop on so� x-ray science at di�raction limited syn-
chrotrons, LBNL, Berkeley October 2014,
Sharp workshop, (Fast Scalable Methods for Ptycho-
graphic imaging, So� X ray ptychography, Kernels
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and cxi �le format, Architecture, S. Marchesini, D.
Shapiro, H. Krishnan F. Maia, Berkeley October
2014.
Detector needs for so� x-ray ptychography, David
Shapiro , ALS User Meeting, Be�er Detectors for
the ALS - Today and Tomorrow, invited talk, LBNL
October 2014
Pairwise relationships in scanning di�ractive imag-
ing, S. Marchesini Mathematical Signal Processing
and Phase Retrieval G�ingen, Sept 1-3, 2014.
So� x-ray microscopy with wavelength limited spatial
resolution, Argonne Imaging Initiative workshop,
David Shapiro, invited talk, ”September 2014
�e international workshop on phase retrieval and co-
herent sca�ering, (Coherence 2014), David Shapiro
contributed talk, September 2014.
Chemical composition mapping at nanometer reso-
lution using so� x-ray microscopy, David Shapiro,
Northwestern Univ. September 2014.
Phase retrieval in high dimensions, S. Marchesini,
RACIRI summer school, Stockholm area, Sweden.
Aug 24-31, 2014
Phase retrieval in high dimensional data space, S.
Marchesini HT Wu* (invited ) in Advances in Phase
retrieval, SIAM imaging conference, Hong Kong,
May 12-14 2014,
Phase retrieval in high dimensional coherent di�rac-
tion data space, S. Marchesini, Gordon Research Con-
ference, X-ray Science, August 4-9, 2013
Ptychography and high dimensional phase retrieval,
S. Marchesini 97th Frontiers in Optics, Orlando,
Floorida, Oct 2013
Robust signal recovery in ptychography, S. March-
esini, Ptycho2013, Hohenkammer Castle Bavaria,
Germany, May 4-7, 2013
Multi-GPU real-time ptychographic x-ray image re-
construction, F. Maia , Ptycho2013, Hohenkammer
Castle Bavaria, Germany, May 4-7, 2013
Coherent imaging, S. Marchesini , APS March Meet-
ing 2013 Baltimore, Maryland. March 18��22, 2013;
Multiscale algorithms for mesoscale di�ractive imag-
ing, S. Marchesini, Real and reciprocal space X-ray
imaging, �e Royal Society at Chicheley Hall, Buck-
inghamshir UK, Feb 2013
Inverse problems in x-ray science, S. Marchesini,
Progress on Statistical Issues in Searches, A Con-
ference Involving Statistical Issues in Astrophysics,

Particle Physics and Photon Science, SLAC National
Accelerator Laboratory, Menlo Park, June 4 - 6, 2012
Coherent di�ractive imaging, S. Marchesini, ESI 2012
Modern Methods of Time-Frequency Analysis II:
Phase Retrieval, Monday, October 8. - Friday, Octo-
ber 12. 2012,
Multi-GPU real-time ptychographic x-ray image re-
construction, F. Maia, GTC conference, San Jose, May
2012.
Cuda Accelerated X-Ray Imaging, F. Maia , Many-
core and Accelerator-based High performance Sci-
enti�c Computing workshop, International Center
for Computational Science (ICCS) Berkeley, 2011.
Compressive Phase Contrast, Tomography, S. March-
esini, SPIE Conference San Diego 2011.
Massively Parallel Holography, Ptychography and
Di�ractive imaging, S. Marchesini, Science at
the hard X-ray di�raction limit: Di�raction mi-
croscopy, holography and ptychography using co-
herent beams, Cornell Laboratory, Ithaca NY, June
2011.
Coherent Imaging at ALS, S. Marchesini, X-ray mi-
croscopy cross cu�ing review, ALS 2011.
Detector Denoising, S. Marchesini, ALS User’s Meet-
ing workshop 2011.
Ptychography at ALS, S. Marchesini, ALS User’s
Meeting workshop 2011.
�e Nanoscale Surveyor, S. Marchesini S. Marchesini
, Carbon Cycle 2.0 Seminar, Lawrence Berkeley Lab,
Oct 6 2011
Inverse Problems in X-Ray Science, S. Marchesini Ney-
man Seminar, Statistics, Berkeley, Nov 9. 2011
Inverse Problems in X-Ray Science, S. Marchesini, (4
lectures), Math Dept., Berkeley, 2011
So� X-ray Ptychography with a fast CCD, S. March-
esini , ALS User meeting workshop 2009.
Ab Initio Compressive Phase retrieval, S. Marchesini
IUCR conference Osaka, Japan, 2008.
Inverse problems for ultrafast high resolution x-ray
imaging, S. Marchesini, SIAM Conference on Imag-
ing Science, San Diego, CA, July 7-9, 2008.
Computational Lenses, S. Marchesini, �e Interna-
tional Workshop on Phase Retrieval and Coherent
Sca�ering, Asilomar, California, USA, June 2007.
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Xi-CAM, User Interfaces, Work�ows, Remote
Execution
CAMERA tomographic reconstruction and analysis
capabilities, available within Xi-cam, Pandol�, RJ,
CAMERA Tomography Workshop 2017, Berkeley
CA, November 8 2017
Xi-CAM and other new so�ware for synchrotron users,
from the ALS, CAMERA, and collaborators, Pandol�,
RJ (organizer), ALS User Meeting 2017, Berkeley CA,
October 4 2017
Xi-cam: Platform for Synchrotron Data Reduction, Vi-
sualization, and Management, Pandol�, RJ, Materials
Data Infrastructure Integration Workshop, Dayton
OH, September 11 2017
Data Management and Analysis at the Advanced
Light Source, Parkinson DY, Molecular Foundry User
Meeting, Berkeley, August 2017
Xi-cam: Platform for Synchrotron Data Reduction, Vi-
sualization, and Management, Pandol�, RJ, canSAS
IX, Berkeley CA, June 6 2017
Xi-cam: Flexible High�roughput Data Processing for
GISAXS, Pandol�, RJ, APS March 2017, New Orleans,
March 15 2017
Gathering, linking, organizing, and mining data at
the ALS, Parkinson, DY, �e Future of Materials Ex-
ploration ALS user meeting workshop, Berkeley,
CA, October 5, 2016
Challenges of Computing for Light-source Science,
Parkinson, DY, CHEP, Computing in High Energy
Physics, San Francisco, CA, 11 October 2016
Xi-cam: Addressing the Data Challenge for X-Ray
Sca�ering, Pandol�, RJ, 2016, ALS User Meeting
2016, Berkeley, October 4, 2016
GISAXS data reduction with Xi-cam, Pandol�, RJ,
GISAS Summer School 2016, Garching, Germany,
July 17-22, 2016
HipIES: platform for synchrotron data analysis, Pan-
dol�, RJ, CCP-SAS, Gaithersburg, MD, 23 May 2016
HipIES: High performance integrated environment for
sca�ering, Pandol�, RJ, SAS 2105, Berlin, 16 Septem-
ber 2015
Real-Time Data-Intensive Computing, Parkinson DY,
12th International Conference on Synchrotron Ra-
diation Instrumentation, New York City. July 5-10,
2015
Tomography data demo, Parkinson DY, SC14, �e In-
ternational Conference for High Performance Com-

puting, Networking, Storage, and Analysis, De-
partment of Energy Exhibition Area, New Orleans,
November 17-20, 2014.
High performance tomography, Parkinson DY, Work-
shop at ALS User Meeting, �High Performance Al-
gorithms, So�ware, Work�ows, and Visualization
for Synchrotrons�, October 2014
High performance algorithms and data management
for tomography at the ALS, Parkinson DY, Big Data
in X-ray Microscopy Workshop, XRM 2014, Mel-
bourne, Australia, October 25-26, 2014
End users’s perspective on Data Challenges, Parkin-
son DY, BES Facilties Computing Working Group
Technical Meeting, Berkeley, February 20th 2014.
Web interfaces and High-Performance Computing:
Solutions to Data Management, Processing, and Anal-
ysis Challenges at the Advanced Light Source X-ray
Facility, Parkinson DY, IEEE Big Data and Science:
Infrastructure and Services Workshop, 6 October
2013,
Performance Tomography, NERSC brown bag talk,
Oakland, CA, Aug. 13, 2013
Dealing with data, Parkinson DY, National User Fa-
cilities Organization, Berkeley, June 2013
Towards an end-to-end solution for light source data,
Parkinson DY, CASIS workshop, Livermore, 22 May
2012
High Performance Tomography, Parkinson DY, In-
ternational workshop on high-volume experimen-
tal data, computational modeling and visualization
(Beijing), 18 October 2011

CAMERA
CAMERA: �e Center for Advanced Mathematics for
Energy Research Applications, Sethian, J.A., Five-way
Light Source Directors Meeting, April 2018
CAMERA: �e Center for Advanced Mathematics for
Energy Research Applications, Sethian, J.A., US De-
partment of Energy, September 2017
CAMERA: �e Center for Advanced Mathematics
for Energy Research Applications, Sethian, J.A.,
NanoCenter Directors, December 2016
CAMERA: �e Center for Advanced Mathematics for
Energy Research Applications, Sethian, J.A., Diamond
Light Source, Harwell, UK, September 2016
CAMERA: �e Center for Advanced Mathematics for
Energy Research Applications, Sethian, J.A., US De-
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partment of Energy, June 2016
CAMERA: �e Center for Advanced Mathematics for
Energy Research Applications, Sethian, J.A., APS, Ar-
gonne National Lab, April 2016
CAMERA: �e Center for Advanced Mathematics for
Energy Research Applications, Sethian, J.A., DOE Sec-
retary Moniz Panel, LBNL, Jan 2016
CAMERA: �e Center for Advanced Mathematics for

Energy Research Applications, Sethian, J.A., ASCAC,
July 2015
CAMERA: �e Center for Advanced Mathematics for
Energy Research Applications, Sethian, J.A., BESAC,
Feb 2015
CAMERA: �e Center for Advanced Mathematics for
Energy Research Applications, Sethian, J.A., ALS
Users Meeting, Oct 2014
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