
SHARP: Architecture

Stefano Marchesini, David Shapiro, Filipe Maia, Hari Krishnan, CAMERA

SHARP

!  Core Algorithm
!  Parallelism
!  Performance

Considerations
!  Deployment

*Covers Architecture Design, Filipe will cover
the Kernels & CXI Data Model

Core Algorithm

!  Input/Output: Handles parallel read and write
operations for SHARP. Efficiently reads and writes
metadata and manages access to raw CXI data.

!  Strategy: Contains the core logic on how to separate
the problem into smaller pieces.

!  Engine (Thrust/Cuda/OpenMP) : Performs the core
image reconstruction algorithm.

Recap

Overlap

FFT

Inverse
FFT

Split Solver
1. setup interface
2. #recons
3. write out CXI

Handling Input & Output

Reads Input

Loads Meta Data (in parallel)

Calculates Frame Corners,
Illumination Shifts, Crops

Image (if needed)

Generates Illumination (if
not provided)

Writes Output: Final image,
illumination intensities,

mask, and error

Input CXI File:
data, probe,
probe_mask

Output CXI File:
/image_1/process
/image_1/data

Parallelism: Strategy

!  One-Dimensional: Divide image along first dimension.

!  Linear: Divide frames equally among all processors.

!  Grid: Divide image based on 2D regions.

!  Communicator
!  Communicates images as well as intermediate frames and frame

corners.
!  Provides Sum, Min, Max, and handles standard and complex data.

Parallelism: Multi-GPU

Image Split

Overlap

Illumination
Refinement

Strategy:
One-Dimensional: Divide image along first dimension.
Linear: Divide frames equally among all processors.
Grid: Divide image based on 2D regions.

Thrust (CUDA/OpenMP) Engine

Initialize: Calculates
Overlapping Frames

Iterate

Determine Overlap, Split
Image

Apply Modulus Projection
and FFT Transformation

Refine Illumination

Repeat…

Overlapping Kernel

Total of 12 GPU Kernels: Overlap, Splits, Average,
Multiply, and Helper Functions.

Performance Considerations

!  Parallelization through domain
decomposition.

!  Use of shared memory.
!  Global communication frequency is

user controllable.

Strategy extends to out of core and
streaming solutions.

Deployment

!  SHARP- Stand alone Executable, Available as a Shared Library.

!  Python Bindings with NumPy & Mpi4Py support
!  mpirun -n X python main.py <sharp-args> -i 20 -N 2 -R -f output.cxi

input.cxi

!  PyQt User Interface.
!  Demo Later in the Day.

SHARP-Python Interface

Control Options

Core Options:
!  -i: number of iterations to run. Defaults to 10.
!  -o: output period of the error metrics in iterations.
!  -r: illumination refinement period in iterations. Defaults to off.
!  -N: number of independent reconstructions to do.
!  -f: output filename (if not given the output is written as a new image in the input file)

Advanced Options:
!  -b: beta parameter for RAAR.
!  -g: how often to go global synchronizations. Defaults to 1.
!  -n: noise parameter for the illumination cutoff. Defaults to 1e-2.
!  -R: round pixel step up.
!  -s: silence all output.
!  -B: relaxed fourier projection.
!  -T: period of background retrieval.
!  -I: enforce intensities when refining illumination.
!  -M: enforce fourier mask when refining illumination.

Debugging Options: -D (output debug messages), -t (output the time the solver takes), -w: turn on frame wrap
around.

Source Code provides –DTIMINGS flag to provide aggregate total times of every kernel & major algorithm.

Thanks!

Core Algorithm: Data Movement

!  Communicator
!  Communicates images as well as intermediate frames and

frame corners.
!  Provides Sum, Min, Max, and handles standard and complex

data.

Core Algorithm:
Image Reconstruction (Part 1)

!  Strategy
!  OneDimensional: Divide image along first dimension. Each

node gets frames wherever the center falls inside the slice.
!  Linear: Divide frames equally among all processors.
!  Grid: Divide image based on 2D regions

!  Stitcher (remove…)
!  Stitch Frames: Accumulate reconstructed image.
!  Stitch Image: Stitch together an image with maximum

magnitudes at each pixel.
!  Solver

!  Set up all parameters and iterate over

Core Algorithm:
Image Reconstruction (Part 2)

Engine – Thrust (Cuda/OpenMP backend)
!  For Each Reconstruction

!  Split Frames, Iterate to refine, Merge Frames.
!  Each iteration (pseudo code)

!  Overlap Projector – description
!  Module Projector – description
!  Perform reconstruction.
!  Refine Illumination.
!  Re-scale and Re-add
!  Compute Error
!  Write to Disk

Parallelism

!  MPI Communication.
!  Communication pattern…

!  GPU Kernels.
!  High level description of kernels…

Performance & Timing

!  Performance numbers
!  TODO:

!  -DTIMINGS
!  Timings can be enabled for all kernels and major operations.

